BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 8140053)

  • 1. Transcellular transport of benzoic acid across Caco-2 cells by a pH-dependent and carrier-mediated transport mechanism.
    Tsuji A; Takanaga H; Tamai I; Terasaki T
    Pharm Res; 1994 Jan; 11(1):30-7. PubMed ID: 8140053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter.
    Wu X; Whitfield LR; Stewart BH
    Pharm Res; 2000 Feb; 17(2):209-15. PubMed ID: 10751037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunohistochemical and functional characterization of pH-dependent intestinal absorption of weak organic acids by the monocarboxylic acid transporter MCT1.
    Tamai I; Sai Y; Ono A; Kido Y; Yabuuchi H; Takanaga H; Satoh E; Ogihara T; Amano O; Izeki S; Tsuji A
    J Pharm Pharmacol; 1999 Oct; 51(10):1113-21. PubMed ID: 10579682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-dependent and carrier-mediated transport of salicylic acid across Caco-2 cells.
    Takanaga H; Tamai I; Tsuji A
    J Pharm Pharmacol; 1994 Jul; 46(7):567-70. PubMed ID: 7996384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carrier-mediated transport of monocarboxylic acids in BeWo cell monolayers as a model of the human trophoblast.
    Utoguchi N; Magnusson M; Audus KL
    J Pharm Sci; 1999 Dec; 88(12):1288-92. PubMed ID: 10585224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carrier-mediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport.
    Simanjuntak MT; Tamai I; Terasaki T; Tsuji A
    J Pharmacobiodyn; 1990 May; 13(5):301-9. PubMed ID: 2273446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carrier-mediated transport of monocarboxylic acids in primary cultured epithelial cells from rabbit oral mucosa.
    Utoguchi N; Watanabe Y; Suzuki T; Maehara J; Matsumoto Y; Matsumoto M
    Pharm Res; 1997 Mar; 14(3):320-4. PubMed ID: 9098874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton-cotransport of pravastatin across intestinal brush-border membrane.
    Tamai I; Takanaga H; Maeda H; Ogihara T; Yoneda M; Tsuji A
    Pharm Res; 1995 Nov; 12(11):1727-32. PubMed ID: 8592677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible role of anion exchanger AE2 as the intestinal monocarboxylic acid/anion antiporter.
    Yabuuchi H; Tamai I; Sai Y; Tsuji A
    Pharm Res; 1998 Mar; 15(3):411-6. PubMed ID: 9563070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nicotinic acid transport mediated by pH-dependent anion antiporter and proton cotransporter in rabbit intestinal brush-border membrane.
    Takanaga H; Maeda H; Yabuuchi H; Tamai I; Higashida H; Tsuji A
    J Pharm Pharmacol; 1996 Oct; 48(10):1073-7. PubMed ID: 8953511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intestinal brush-border membrane transport of monocarboxylic acids mediated by proton-coupled transport and anion antiport mechanisms.
    Tamai I; Takanaga H; Maeda H; Yabuuchi H; Sai Y; Suzuki Y; Tsuji A
    J Pharm Pharmacol; 1997 Jan; 49(1):108-12. PubMed ID: 9120761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids.
    Tamai I; Takanaga H; Maeda H; Sai Y; Ogihara T; Higashida H; Tsuji A
    Biochem Biophys Res Commun; 1995 Sep; 214(2):482-9. PubMed ID: 7677755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Molecular characterization of intestinal absorption of drugs by carrier-mediated transport mechanisms].
    Tamai I
    Yakugaku Zasshi; 1997 Jul; 117(7):415-34. PubMed ID: 9261213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of aristolochic acid I into Caco-2 cells by monocarboxylic acid transporters.
    Kimura O; Haraguchi K; Ohta C; Koga N; Kato Y; Endo T
    Biol Pharm Bull; 2014; 37(9):1475-9. PubMed ID: 25177030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intestinal brush-border transport of the oral cephalosporin antibiotic, cefdinir, mediated by dipeptide and monocarboxylic acid transport systems in rabbits.
    Tsuji A; Tamai I; Nakanishi M; Terasaki T; Hamano S
    J Pharm Pharmacol; 1993 Nov; 45(11):996-8. PubMed ID: 7908046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism and regulation of human intestinal niacin uptake.
    Nabokina SM; Kashyap ML; Said HM
    Am J Physiol Cell Physiol; 2005 Jul; 289(1):C97-103. PubMed ID: 15728713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of intestinal absorption of an orally active beta-lactam prodrug: uptake and transport of carindacillin in Caco-2 cells.
    Li YH; Ito K; Tsuda Y; Kohda R; Yamada H; Itoh T
    J Pharmacol Exp Ther; 1999 Sep; 290(3):958-64. PubMed ID: 10454465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake of triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) and dicamba (3,6-dichloro-2-methoxybenzoic acid) from the apical membranes of the human intestinal Caco-2 cells.
    Kimura O; Tsukagoshi K; Hayasaka M; Endo T
    Arch Toxicol; 2012 Jan; 86(1):55-61. PubMed ID: 21766207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional clarification of MCT1-mediated transport of monocarboxylic acids at the blood-brain barrier using in vitro cultured cells and in vivo BUI studies.
    Kido Y; Tamai I; Okamoto M; Suzuki F; Tsuji A
    Pharm Res; 2000 Jan; 17(1):55-62. PubMed ID: 10714609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transepithelial transport of 4-chloro-2-methylphenoxyacetic acid (MCPA) across human intestinal Caco-2 cell monolayers.
    Kimura O; Tsukagoshi K; Hayasaka M; Endo T
    Basic Clin Pharmacol Toxicol; 2012 Jun; 110(6):530-6. PubMed ID: 22181038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.