These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 8140088)
1. An internal cellulose-binding domain mediates adsorption of an engineered bifunctional xylanase/cellulase. Tomme P; Gilkes NR; Miller RC; Warren AJ; Kilburn DG Protein Eng; 1994 Jan; 7(1):117-23. PubMed ID: 8140088 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a Cellulomonas fimi exoglucanase/xylanase-endoglucanase gene fusion which improves microbial degradation of cellulosic biomass. Duedu KO; French CE Enzyme Microb Technol; 2016 Nov; 93-94():113-121. PubMed ID: 27702471 [TBL] [Abstract][Full Text] [Related]
3. Functional analysis of a hybrid endoglucanase of bacterial origin having a cellulose binding domain from a fungal exoglucanase. Kim H; Goto M; Jeong HJ; Jung KH; Kwon I; Furukawa K Appl Biochem Biotechnol; 1998; 75(2-3):193-204. PubMed ID: 10230019 [TBL] [Abstract][Full Text] [Related]
5. Multiple xylanases of Cellulomonas fimi are encoded by distinct genes. Clarke JH; Laurie JI; Gilbert HJ; Hazlewood GP FEMS Microbiol Lett; 1991 Oct; 67(3):305-9. PubMed ID: 1769538 [TBL] [Abstract][Full Text] [Related]
6. Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced beta-glucanase and xylanase expressed in Escherichia coli. Lu P; Feng MG; Li WF; Hu CX FEMS Microbiol Lett; 2006 Aug; 261(2):224-30. PubMed ID: 16907724 [TBL] [Abstract][Full Text] [Related]
7. Characterization and comparison of Clostridium cellulovorans endoglucanases-xylanases EngB and EngD hyperexpressed in Escherichia coli. Foong FC; Doi RH J Bacteriol; 1992 Feb; 174(4):1403-9. PubMed ID: 1735727 [TBL] [Abstract][Full Text] [Related]
8. The N-terminal region of an endoglucanase from Pseudomonas fluorescens subspecies cellulosa constitutes a cellulose-binding domain that is distinct from the catalytic centre. Gilbert HJ; Hall J; Hazlewood GP; Ferreira LM Mol Microbiol; 1990 May; 4(5):759-67. PubMed ID: 2117693 [TBL] [Abstract][Full Text] [Related]
9. A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulase-hemicellulase complex. Fillingham IJ; Kroon PA; Williamson G; Gilbert HJ; Hazlewood GP Biochem J; 1999 Oct; 343 Pt 1(Pt 1):215-24. PubMed ID: 10493932 [TBL] [Abstract][Full Text] [Related]
10. Evidence for synergy between family 2b carbohydrate binding modules in Cellulomonas fimi xylanase 11A. Bolam DN; Xie H; White P; Simpson PJ; Hancock SM; Williamson MP; Gilbert HJ Biochemistry; 2001 Feb; 40(8):2468-77. PubMed ID: 11327868 [TBL] [Abstract][Full Text] [Related]
11. Engineering of a multifunctional hemicellulase. Fan Z; Werkman JR; Yuan L Biotechnol Lett; 2009 May; 31(5):751-7. PubMed ID: 19169889 [TBL] [Abstract][Full Text] [Related]
12. Spatial separation of protein domains is not necessary for catalytic activity or substrate binding in a xylanase. Ferreira LM; Durrant AJ; Hall J; Hazlewood GP; Gilbert HJ Biochem J; 1990 Jul; 269(1):261-4. PubMed ID: 2115772 [TBL] [Abstract][Full Text] [Related]
13. Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain. Tomme P; Driver DP; Amandoron EA; Miller RC; Antony R; Warren J; Kilburn DG J Bacteriol; 1995 Aug; 177(15):4356-63. PubMed ID: 7635821 [TBL] [Abstract][Full Text] [Related]
14. Purification of human interleukin-2 using the cellulose-binding domain of a prokaryotic cellulase. Ong E; Alimonti JB; Greenwood JM; Miller RC; Warren RA; Kilburn DG Bioseparation; 1995 Apr; 5(2):95-104. PubMed ID: 7772950 [TBL] [Abstract][Full Text] [Related]
15. Genes encoding xylan and beta-glucan hydrolysing enzymes in Bacillus subtilis: characterization, mapping and construction of strains deficient in lichenase, cellulase and xylanase. Wolf M; Geczi A; Simon O; Borriss R Microbiology (Reading); 1995 Feb; 141 ( Pt 2)():281-90. PubMed ID: 7704256 [TBL] [Abstract][Full Text] [Related]
16. Development of a chimeric hemicellulase to enhance the xylose production and thermotolerance. Diogo JA; Hoffmam ZB; Zanphorlin LM; Cota J; Machado CB; Wolf LD; Squina F; Damásio AR; Murakami MT; Ruller R Enzyme Microb Technol; 2015 Feb; 69():31-7. PubMed ID: 25640722 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a cellulose binding domain from Clostridium cellulovorans endoglucanase-xylanase D and its use as a fusion partner for soluble protein expression in Escherichia coli. Xu Y; Foong FC J Biotechnol; 2008 Jul; 135(4):319-25. PubMed ID: 18585812 [TBL] [Abstract][Full Text] [Related]
18. Application of cellulase and hemicellulase to pure xylan, pure cellulose, and switchgrass solids from leading pretreatments. Shi J; Ebrik MA; Yang B; Garlock RJ; Balan V; Dale BE; Pallapolu VR; Lee YY; Kim Y; Mosier NS; Ladisch MR; Holtzapple MT; Falls M; Sierra-Ramirez R; Donohoe BS; Vinzant TB; Elander RT; Hames B; Thomas S; Warner RE; Wyman CE Bioresour Technol; 2011 Dec; 102(24):11080-8. PubMed ID: 21596559 [TBL] [Abstract][Full Text] [Related]
19. A multifunctional α-amylase BSGH13 from Bacillus subtilis BS-5 possessing endoglucanase and xylanase activities. Liu Z; Li J; Jie C; Wu B; Hao N Int J Biol Macromol; 2021 Feb; 171():166-176. PubMed ID: 33421464 [TBL] [Abstract][Full Text] [Related]
20. The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel. Hall J; Black GW; Ferreira LM; Millward-Sadler SJ; Ali BR; Hazlewood GP; Gilbert HJ Biochem J; 1995 Aug; 309 ( Pt 3)(Pt 3):749-56. PubMed ID: 7639689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]