BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 8140412)

  • 21. Three-finger toxin fold for the extracellular ligand-binding domain of the type II activin receptor serine kinase.
    Greenwald J; Fischer WH; Vale WW; Choe S
    Nat Struct Biol; 1999 Jan; 6(1):18-22. PubMed ID: 9886286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlation between ALK-6 (BMPR-IB) distribution and responsiveness to osteogenic protein-1 (BMP-7) in embryonic mouse bone rudiments.
    Haaijman A; Burger EH; Goei SW; Nelles L; ten Dijke P; Huylebroeck D; Bronckers AL
    Growth Factors; 2000; 17(3):177-92. PubMed ID: 10705576
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Betaglycan binds inhibin and can mediate functional antagonism of activin signalling.
    Lewis KA; Gray PC; Blount AL; MacConell LA; Wiater E; Bilezikjian LM; Vale W
    Nature; 2000 Mar; 404(6776):411-4. PubMed ID: 10746731
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A widely expressed transmembrane serine/threonine kinase that does not bind activin, inhibin, transforming growth factor beta, or bone morphogenic factor.
    Matsuzaki K; Xu J; Wang F; McKeehan WL; Krummen L; Kan M
    J Biol Chem; 1993 Jun; 268(17):12719-23. PubMed ID: 8389764
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A chimeric serine/threonine kinase receptor system reveals the potential of multiple type II receptors to cooperate with transforming growth factor-beta type I receptor.
    Muramatsu M; Yan J; Eto K; Tomoda T; Yamada R; Arai K
    Mol Biol Cell; 1997 Mar; 8(3):469-80. PubMed ID: 9188099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The transforming growth factor beta type II receptor can replace the activin type II receptor in inducing mesoderm.
    Bhushan A; Lin HY; Lodish HF; Kintner CR
    Mol Cell Biol; 1994 Jun; 14(6):4280-5. PubMed ID: 8196664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a binding site on the type II activin receptor for activin and inhibin.
    Gray PC; Greenwald J; Blount AL; Kunitake KS; Donaldson CJ; Choe S; Vale W
    J Biol Chem; 2000 Feb; 275(5):3206-12. PubMed ID: 10652306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinct spatial and temporal expression patterns of two type I receptors for bone morphogenetic proteins during mouse embryogenesis.
    Dewulf N; Verschueren K; Lonnoy O; Morén A; Grimsby S; Vande Spiegle K; Miyazono K; Huylebroeck D; Ten Dijke P
    Endocrinology; 1995 Jun; 136(6):2652-63. PubMed ID: 7750489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of transforming growth factor-beta superfamily receptors in rat eyes.
    Obata H; Kaji Y; Yamada H; Kato M; Tsuru T; Yamashita H
    Acta Ophthalmol Scand; 1999 Apr; 77(2):151-6. PubMed ID: 10321529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a functional binding site for activin on the type I receptor ALK4.
    Harrison CA; Gray PC; Koerber SC; Fischer W; Vale W
    J Biol Chem; 2003 Jun; 278(23):21129-35. PubMed ID: 12665502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7.
    Inman GJ; Nicolás FJ; Callahan JF; Harling JD; Gaster LM; Reith AD; Laping NJ; Hill CS
    Mol Pharmacol; 2002 Jul; 62(1):65-74. PubMed ID: 12065756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activin and inhibin have antagonistic effects on ligand-dependent heteromerization of the type I and type II activin receptors and human erythroid differentiation.
    Lebrun JJ; Vale WW
    Mol Cell Biol; 1997 Mar; 17(3):1682-91. PubMed ID: 9032295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adenoviral gene transfer allows Smad-responsive gene promoter analyses and delineation of type I receptor usage of transforming growth factor-beta family ligands in cultured human granulosa luteal cells.
    Kaivo-Oja N; Mottershead DG; Mazerbourg S; Myllymaa S; Duprat S; Gilchrist RB; Groome NP; Hsueh AJ; Ritvos O
    J Clin Endocrinol Metab; 2005 Jan; 90(1):271-8. PubMed ID: 15483083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vascular smooth muscle cells express multiple type I receptors for TGF-beta, activin, and bone morphogenetic proteins.
    Agrotis A; Samuel M; Prapas G; Bobik A
    Biochem Biophys Res Commun; 1996 Feb; 219(2):613-8. PubMed ID: 8605036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects.
    Yamashita H; ten Dijke P; Huylebroeck D; Sampath TK; Andries M; Smith JC; Heldin CH; Miyazono K
    J Cell Biol; 1995 Jul; 130(1):217-26. PubMed ID: 7790373
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel type I receptor serine-threonine kinase predominantly expressed in the adult central nervous system.
    Rydén M; Imamura T; Jörnvall H; Belluardo N; Neveu I; Trupp M; Okadome T; ten Dijke P; Ibáñez CF
    J Biol Chem; 1996 Nov; 271(48):30603-9. PubMed ID: 8940033
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of two amino acids in activin A that are important for biological activity and binding to the activin type II receptors.
    Wuytens G; Verschueren K; de Winter JP; Gajendran N; Beek L; Devos K; Bosman F; de Waele P; Andries M; van den Eijnden-van Raaij AJ; Smith JC; Huylebroeck D
    J Biol Chem; 1999 Apr; 274(14):9821-7. PubMed ID: 10092672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct localization of two serine-threonine kinase receptors for activin and TGF-beta in the rat brain and down-regulation of type I activin receptor during peripheral nerve regeneration.
    Morita N; Takumi T; Kiyama H
    Brain Res Mol Brain Res; 1996 Dec; 42(2):263-71. PubMed ID: 9013782
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Serine/threonine kinase receptors.
    ten Dijke P; Franzén P; Yamashita H; Ichijo H; Heldin CH; Miyazono K
    Prog Growth Factor Res; 1994; 5(1):55-72. PubMed ID: 8199354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibin antagonizes inhibition of liver cell growth by activin by a dominant-negative mechanism.
    Xu J; McKeehan K; Matsuzaki K; McKeehan WL
    J Biol Chem; 1995 Mar; 270(11):6308-13. PubMed ID: 7890768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.