These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 814124)

  • 1. Membrane-associated enzymes involved in nucleoside processing by plasma membrane vesicles isolated from L929 cells grown in defined medium.
    Li CC; Hochstadt J
    J Biol Chem; 1976 Feb; 251(4):1181-7. PubMed ID: 814124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport mechanisms in isolated plasma membranes. Nucleoside processing by membrane vesicles from mouse fibroblast cells grown in defined medium.
    Li CC; Hochstadt J
    J Biol Chem; 1976 Feb; 251(4):1175-80. PubMed ID: 2604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The existance of a group translocation transport mechanism in animal cells: uptake of the ribose moiety of inosine.
    Quinlan DC; Li CC; Hochstadt J
    J Supramol Struct; 1976; 4(4):387-99. PubMed ID: 180353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Group translocation of the ribose moiety of inosine by vesicles of plasma membrane from T(3 cells transformed by Simian virus 40.
    Quinlan DC; Hochstadt J
    J Biol Chem; 1976 Jan; 251(2):344-54. PubMed ID: 173717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiles of purine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers.
    Katahira R; Ashihara H
    Planta; 2006 Dec; 225(1):115-26. PubMed ID: 16845529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of purine utilization in bacteria. VII. Involvement of membrane-associated nucleoside phosphorylase in the uptake and the base-mediated loss of the ribose moiety of nucleosides by Salmonella typhimurium membrane vesicles.
    Rader RL; Hochstadt J
    J Bacteriol; 1976 Oct; 128(1):290-301. PubMed ID: 789336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct mechanisms of hypoxanthine and inosine transport in membrane vesicles isolated from Chinese hamster ovary and Balb 3T3 cells.
    Prasad R; Shopsis C; Hochstadt J
    Biochim Biophys Acta; 1981 May; 643(2):306-18. PubMed ID: 7225383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purine metabolism in cultured human fibroblasts derived from patients deficient in hypoxanthine phosphoribosyltransferase, purine nucleoside phosphorylase, or adenosine deaminase.
    Thompson LF; Willis RC; Stoop JW; Seegmiller JE
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3722-6. PubMed ID: 99741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facilitated transport of inosine and uridine in cultured mammalian cells is independent of nucleoside phosphorylases.
    Plagemann PG; Wohlhueter RM; Erbe J
    Biochim Biophys Acta; 1981 Jan; 640(2):448-62. PubMed ID: 6783140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purine metabolic cycle in normal and leukemic leukocytes.
    Dietz AA; Czebotar V
    Cancer Res; 1977 Feb; 37(2):419-26. PubMed ID: 188545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xanthosine and xanthine. Substrate properties with purine nucleoside phosphorylases, and relevance to other enzyme systems.
    Stoychev G; Kierdaszuk B; Shugar D
    Eur J Biochem; 2002 Aug; 269(16):4048-57. PubMed ID: 12180982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction and repression of enzymes involved in exogenous purine compound utilization of Bacillus cereus.
    Tozzi MG; Sgarrella F; Ipata PL
    Biochim Biophys Acta; 1981 Dec; 678(3):460-6. PubMed ID: 6274419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purine nucleoside phosphorylase. Inosine hydrolysis, tight binding of the hypoxanthine intermediate, and third-the-sites reactivity.
    Kline PC; Schramm VL
    Biochemistry; 1992 Jul; 31(26):5964-73. PubMed ID: 1627539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymes involved in purine metabolism--a review of histochemical localization and functional implications.
    Moriwaki Y; Yamamoto T; Higashino K
    Histol Histopathol; 1999 Oct; 14(4):1321-40. PubMed ID: 10506947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine cycle in African trypanosomes.
    Ogbunude PO; Ikediobi CO; Ukoha AI
    Ann Trop Med Parasitol; 1985 Feb; 79(1):7-11. PubMed ID: 3920982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The function and activity of certain membrane enzymes when localized on- and off- the membrane.
    Hochstadt J; Quinlan D
    J Cell Physiol; 1976 Dec; 89(4):839-52. PubMed ID: 827551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylase-mediated mobilization of the amino group of adenine in Bacillus cereus.
    Mura U; Di Martino D; Leporini C; Gini S; Camici M; Ipata PL
    Arch Biochem Biophys; 1987 Dec; 259(2):466-72. PubMed ID: 3122663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine kinase initiates the major route of ribavirin activation in a cultured human cell line.
    Willis RC; Carson DA; Seegmiller JE
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3042-4. PubMed ID: 210448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purine metabolism in Neisseria meningitidis. 2. Utilization of exogenous adenosine, guanosine and inosine.
    Jyssum S
    Acta Pathol Microbiol Scand B Microbiol Immunol; 1974 Dec; 82(6):885-94. PubMed ID: 4218443
    [No Abstract]   [Full Text] [Related]  

  • 20. Purine metabolizing enzymes of Plasmodium lophurae and its host cell, the duckling (Anas domesticus) erythrocyte.
    Yamada KA; Sherman IW
    Mol Biochem Parasitol; 1981 Apr; 2(5-6):349-58. PubMed ID: 6787422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.