BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 8141353)

  • 1. Relation among regional O2 consumption, high-energy phosphates, and substrate uptake in porcine right ventricle.
    Schwartz GG; Greyson CR; Wisneski JA; Garcia J; Steinman S
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H521-30. PubMed ID: 8141353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of fatty acid metabolism alters myocardial high-energy phosphates in vivo.
    Schwartz GG; Greyson C; Wisneski JA; Garcia J
    Am J Physiol; 1994 Jul; 267(1 Pt 2):H224-31. PubMed ID: 8048588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct action of T3 on phosphorylation potential in the sheep heart in vivo.
    Portman MA; Qian K; Krueger J; Ning XH
    Am J Physiol Heart Circ Physiol; 2005 May; 288(5):H2484-90. PubMed ID: 15637117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamic regulation of myocardial oxidative phosphorylation: analysis of the response time of oxygen consumption.
    van Beek JH; Tian X; Zuurbier CJ; de Groot B; van Echteld CJ; Eijgelshoven MH; Hak JB
    Mol Cell Biochem; 1998 Jul; 184(1-2):321-44. PubMed ID: 9746328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence for a role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in the stimulated rat heart. Studies using 31P n.m.r. and ruthenium red.
    Unitt JF; McCormack JG; Reid D; MacLachlan LK; England PJ
    Biochem J; 1989 Aug; 262(1):293-301. PubMed ID: 2479373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myocardial high-energy phosphate and substrate metabolism in swine with moderate left ventricular hypertrophy.
    Massie BM; Schaefer S; Garcia J; McKirnan MD; Schwartz GG; Wisneski JA; Weiner MW; White FC
    Circulation; 1995 Mar; 91(6):1814-23. PubMed ID: 7882492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetics of acute pressure overload of the porcine right ventricle. In vivo 31P nuclear magnetic resonance.
    Schwartz GG; Steinman S; Garcia J; Greyson C; Massie B; Weiner MW
    J Clin Invest; 1992 Mar; 89(3):909-18. PubMed ID: 1541681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation of myocardial oxygen consumption and function to high energy phosphate utilization during graded hypoxia and reoxygenation in sheep in vivo.
    Portman MA; Standaert TA; Ning XH
    J Clin Invest; 1995 May; 95(5):2134-42. PubMed ID: 7738181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo 31P-NMR spectroscopy of right ventricle in pigs.
    Schwartz GG; Steinman SK; Weiner MW; Matson GB
    Am J Physiol; 1992 Jun; 262(6 Pt 2):H1950-4. PubMed ID: 1621852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myocardial energy metabolism in the newborn lamb in vivo during pacing-induced changes in oxygen consumption.
    Portman MA; Ning XH
    Pediatr Res; 1995 Feb; 37(2):182-8. PubMed ID: 7731755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between the O2 supply:demand ratio, MVO2, and adenosine formation in hearts stimulated with inotropic agents.
    Headrick JP; Willis RJ
    Can J Physiol Pharmacol; 1990 Jan; 68(1):110-8. PubMed ID: 2158384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmural high energy phosphate distribution and response to alterations in workload in the normal canine myocardium as studied with spatially localized 31P NMR spectroscopy.
    Robitaille PM; Merkle H; Lew B; Path G; Hendrich K; Lindstrom P; From AH; Garwood M; Bache RJ; Uğurbil K
    Magn Reson Med; 1990 Oct; 16(1):91-116. PubMed ID: 2255241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental changes in the relation between phosphate metabolites and oxygen consumption in the sheep heart in vivo.
    Portman MA; Heineman FW; Balaban RS
    J Clin Invest; 1989 Feb; 83(2):456-64. PubMed ID: 2913049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Right and left ventricular O2 uptake during hemodilution and beta-adrenergic stimulation.
    Crystal GJ; Kim SJ; Salem MR
    Am J Physiol; 1993 Nov; 265(5 Pt 2):H1769-77. PubMed ID: 8238590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory control in heart muscle during fatty acid oxidation. Energy state or substrate-level regulation by Ca2+?
    Vuorinen KH; Ala-Rämi A; Yan Y; Ingman P; Hassinen IE
    J Mol Cell Cardiol; 1995 Aug; 27(8):1581-91. PubMed ID: 8523421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 31P-NMR studies of respiratory regulation in the intact myocardium.
    From AH; Petein MA; Michurski SP; Zimmer SD; Uğurbil K
    FEBS Lett; 1986 Oct; 206(2):257-61. PubMed ID: 3530811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociation between adenosine release, MVO2, and energy status in working guinea pig hearts.
    Decking UK; Arens S; Schlieper G; Schulze K; Schrader J
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H371-81. PubMed ID: 9038958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative phosphorylation system during steady-state hypoxia in the dog brain.
    Nioka S; Smith DS; Chance B; Subramanian HV; Butler S; Katzenberg M
    J Appl Physiol (1985); 1990 Jun; 68(6):2527-35. PubMed ID: 2384431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen supply and oxidative phosphorylation limitation in rat myocardium in situ.
    Kreutzer U; Mekhamer Y; Chung Y; Jue T
    Am J Physiol Heart Circ Physiol; 2001 May; 280(5):H2030-7. PubMed ID: 11299203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.