BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 8141576)

  • 1. Comparison of mutants of Toxoplasma gondii selected for resistance to azithromycin, spiramycin, or clindamycin.
    Pfefferkorn ER; Borotz SE
    Antimicrob Agents Chemother; 1994 Jan; 38(1):31-7. PubMed ID: 8141576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of cytoplasmic and organellar protein synthesis in Toxoplasma gondii. Implications for the target of macrolide antibiotics.
    Beckers CJ; Roos DS; Donald RG; Luft BJ; Schwab JC; Cao Y; Joiner KA
    J Clin Invest; 1995 Jan; 95(1):367-76. PubMed ID: 7814637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parasiticidal effect of clindamycin on Toxoplasma gondii grown in cultured cells and selection of a drug-resistant mutant.
    Pfefferkorn ER; Nothnagel RF; Borotz SE
    Antimicrob Agents Chemother; 1992 May; 36(5):1091-6. PubMed ID: 1510399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Azithromycin and spiramycin induce anti-inflammatory response in human trophoblastic (BeWo) cells infected by Toxoplasma gondii but are able to control infection.
    Franco PS; Gomes AO; Barbosa BF; Angeloni MB; Silva NM; Teixeira-Carvalho A; Martins-Filho OA; Silva DA; Mineo JR; Ferro EA
    Placenta; 2011 Nov; 32(11):838-44. PubMed ID: 21908042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Azithromycin treatment is able to control the infection by two genotypes of Toxoplasma gondii in human trophoblast BeWo cells.
    Ribeiro M; Franco PS; Lopes-Maria JB; Angeloni MB; Barbosa BF; Gomes AO; Castro AS; Silva RJD; Oliveira FC; Milian ICB; Martins-Filho OA; Ietta F; Mineo JR; Ferro EAV
    Exp Parasitol; 2017 Oct; 181():111-118. PubMed ID: 28803905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutants of Toxoplasma gondii resistant to atovaquone (566C80) or decoquinate.
    Pfefferkorn ER; Borotz SE; Nothnagel RF
    J Parasitol; 1993 Aug; 79(4):559-64. PubMed ID: 8331476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo activity of the macrolide antibiotics azithromycin, roxithromycin and spiramycin against Toxoplasma gondii.
    Araujo FG; Shepard RM; Remington JS
    Eur J Clin Microbiol Infect Dis; 1991 Jun; 10(6):519-24. PubMed ID: 1655433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Azithromycin inhibits vertical transmission of Toxoplasma gondii in Calomys callosus (Rodentia: Cricetidae).
    Costa IN; Angeloni MB; Santana LA; Barbosa BF; Silva MC; Rodrigues AA; Rostkowsa C; Magalhães PM; Pena JD; Silva DA; Mineo JR; Ferro EA
    Placenta; 2009 Oct; 30(10):884-90. PubMed ID: 19703714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a mutant of Toxoplasma gondii resistant to aphidicolin.
    Pfefferkorn ER
    J Protozool; 1984 May; 31(2):306-10. PubMed ID: 6206226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro assays elucidate peculiar kinetics of clindamycin action against Toxoplasma gondii.
    Fichera ME; Bhopale MK; Roos DS
    Antimicrob Agents Chemother; 1995 Jul; 39(7):1530-7. PubMed ID: 7492099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro effects of four macrolides (roxithromycin, spiramycin, azithromycin [CP-62,993], and A-56268) on Toxoplasma gondii.
    Chang HR; Pechère JC
    Antimicrob Agents Chemother; 1988 Apr; 32(4):524-9. PubMed ID: 2837140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of clindamycin on intracellular replication, protein synthesis, and infectivity of Toxoplasma gondii.
    Blais J; Tardif C; Chamberland S
    Antimicrob Agents Chemother; 1993 Dec; 37(12):2571-7. PubMed ID: 7509143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An rRNA mutation identifies the apicoplast as the target for clindamycin in Toxoplasma gondii.
    Camps M; Arrizabalaga G; Boothroyd J
    Mol Microbiol; 2002 Mar; 43(5):1309-18. PubMed ID: 11918815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A plastid organelle as a drug target in apicomplexan parasites.
    Fichera ME; Roos DS
    Nature; 1997 Nov; 390(6658):407-9. PubMed ID: 9389481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative activity of macrolides against Toxoplasma gondii demonstrating utility of an in vitro microassay.
    Chamberland S; Kirst HA; Current WL
    Antimicrob Agents Chemother; 1991 May; 35(5):903-9. PubMed ID: 1854172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Toxoplasma gondii protein synthesis by azithromycin.
    Blais J; Garneau V; Chamberland S
    Antimicrob Agents Chemother; 1993 Aug; 37(8):1701-3. PubMed ID: 8215287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brazilian strains of Toxoplasma gondii are controlled by azithromycin and modulate cytokine production in human placental explants.
    Franco PS; Gois PSG; de Araújo TE; da Silva RJ; de Freitas Barbosa B; de Oliveira Gomes A; Ietta F; Dos Santos LA; Dos Santos MC; Mineo JR; Ferro EAV
    J Biomed Sci; 2019 Jan; 26(1):10. PubMed ID: 30665403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Systematic Review and Meta-Analysis of the Efficacy of Anti-Toxoplasma gondii Medicines in Humans.
    Wei HX; Wei SS; Lindsay DS; Peng HJ
    PLoS One; 2015; 10(9):e0138204. PubMed ID: 26394212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quercetin inhibits Toxoplasma gondii tachyzoite proliferation and acts synergically with azithromycin.
    Abugri DA; Wijerathne SVT; Sharma HN; Ayariga JA; Napier A; Robertson BK
    Parasit Vectors; 2023 Aug; 16(1):261. PubMed ID: 37537675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Comparative activity of several antibiotics against Toxoplasma gondii in a mouse model].
    Rodríguez-Díaz JC; Martínez-Grueiro MM; Martínez-Fernández AR
    Enferm Infecc Microbiol Clin; 1993 Dec; 11(10):543-6. PubMed ID: 8142504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.