BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 8141783)

  • 1. Alkalosis- and ATP-induced increases in the diacyglycerol pool in alveolar type II cells are derived from phosphatidylcholine and phosphatidylinositol.
    Sen N; Chander A
    Biochem J; 1994 Mar; 298 Pt 3(Pt 3):681-7. PubMed ID: 8141783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphatidylinositol- and phosphatidylcholine-dependent phospholipases C are involved in the mechanism of action of atrial natriuretic factor in cultured rat aortic smooth muscle cells.
    Zannetti A; Luly P; Musanti R; Baldini PM
    J Cell Physiol; 1997 Mar; 170(3):272-8. PubMed ID: 9066784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelin-1 stimulates hydrolysis of phosphatidylcholine by phospholipases C and D in intact rat mesenteric arteries.
    Liu GL; Shaw L; Heagerty AM; Ohanian V; Ohanian J
    J Vasc Res; 1999; 36(1):35-46. PubMed ID: 10050072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple sources of 1,2-diacylglycerol in isolated rat pancreatic acini stimulated by cholecystokinin. Involvement of phosphatidylinositol bisphosphate and phosphatidylcholine hydrolysis.
    Matozaki T; Williams JA
    J Biol Chem; 1989 Sep; 264(25):14729-34. PubMed ID: 2549032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid desensitization of vasopressin-stimulated phosphatidylinositol 4,5-bisphosphate and phosphatidylcholine hydrolysis questions the role of these pathways in sustained diacylglycerol formation in A10 vascular-smooth-muscle cells.
    Plevin R; Wakelam MJ
    Biochem J; 1992 Aug; 285 ( Pt 3)(Pt 3):759-66. PubMed ID: 1323272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-stimulated inositol phospholipid metabolism and surfactant secretion in rat type II pneumocytes.
    Griese M; Gobran LI; Rooney SA
    Am J Physiol; 1991 Jun; 260(6 Pt 1):L586-93. PubMed ID: 1647684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphatidylcholine is a quantitatively more important source of increased 1,2-diacylglycerol than is phosphatidylinositol in mast cells.
    Kennerly DA
    J Immunol; 1990 May; 144(10):3912-9. PubMed ID: 2139674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substance P-induced diacylglycerol formation in rat parotid acinar cells.
    Komabayashi T; Yakata A; Izawa T; Suda K; Noguchi M; Tsuboi M
    Eur J Pharmacol; 1991 Aug; 207(4):329-35. PubMed ID: 1723687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of ATP-dependent surfactant secretion and activation of second-messenger systems in alveolar type II cells.
    Voyno-Yasenetskaya TA; Dobbs LG; Williams MC
    Am J Physiol; 1991 Oct; 261(4 Suppl):105-9. PubMed ID: 1928448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of high-glucose effect on phosphatidylcholine hydrolysis of cultured retinal capillary pericytes and endothelial cells.
    Li W; Wang W; Liu X
    Biochim Biophys Acta; 1994 Jul; 1222(3):339-47. PubMed ID: 8038202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of lung surfactant secretion by phospholipase A2.
    Liu L
    J Cell Biochem; 1999 Jan; 72(1):103-10. PubMed ID: 10025671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epidermal growth factor induces the production of biologically distinguishable diglyceride species from phosphatidylinositol and phosphatidylcholine via the independent activation of type C and type D phospholipases.
    Song J; Jiang YW; Foster DA
    Cell Growth Differ; 1994 Jan; 5(1):79-85. PubMed ID: 8123595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustained diacylglycerol accumulation resulting from prolonged G protein-coupled receptor agonist-induced phosphoinositide breakdown in hepatocytes.
    Nilssen LS; Dajani O; Christoffersen T; Sandnes D
    J Cell Biochem; 2005 Feb; 94(2):389-402. PubMed ID: 15526278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+ ionophore and phorbol ester stimulate diacylglycerol formation and phosphatidylcholine hydrolysis in rat parotid acinar cells.
    Komabayashi T; Yakata A; Izawa T; Noguchi M; Suda K; Tsuboi M
    Jpn J Pharmacol; 1992 May; 59(1):97-103. PubMed ID: 1507663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiotensin-mediated phosphatidylcholine hydrolysis and protein kinase C activation in mesangial cells.
    Barnett RL; Ruffini L; Ramsammy L; Pasmantier R; Friedlaender MM; Nord EP
    Am J Physiol; 1993 Oct; 265(4 Pt 1):C1100-8. PubMed ID: 8238300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P2u purinoceptor stimulation of surfactant secretion coupled to phosphatidylcholine hydrolysis in type II cells.
    Gobran LI; Xu ZX; Lu Z; Rooney SA
    Am J Physiol; 1994 Nov; 267(5 Pt 1):L625-33. PubMed ID: 7977773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agonist-mediated activation of phosphatidylcholine-specific phospholipase C and D in intestinal smooth muscle.
    Murthy KS; Makhlouf GM
    Mol Pharmacol; 1995 Aug; 48(2):293-304. PubMed ID: 7651363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of receptor-dependent activation of phosphatidylcholine hydrolysis by both phospholipase D and phospholipase C.
    Dinh TT; Kennerly DA
    Cell Regul; 1991 Apr; 2(4):299-309. PubMed ID: 1829383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cGMP antagonizes angiotensin-mediated phosphatidylcholine hydrolysis and C kinase activation in mesangial cells.
    Barnett RL; Ruffini L; Ramsammy L; Pasmantier R; Friedlaender MM; Nord EP
    Am J Physiol; 1995 Feb; 268(2 Pt 1):C376-81. PubMed ID: 7864076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of carbachol-stimulated diacylglycerol formation in rat parotid acinar cells.
    Komabayashi T; Yakata A; Izawa T; Fujinami H; Suda K; Tsuboi M
    Eur J Pharmacol; 1992 Mar; 225(3):209-16. PubMed ID: 1325365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.