These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8142342)

  • 1. A single hydrophobic to hydrophobic substitution in the transmembrane domain impairs aspartate receptor function.
    Jeffery CJ; Koshland DE
    Biochemistry; 1994 Mar; 33(12):3457-63. PubMed ID: 8142342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane signaling by the aspartate receptor: engineered disulfides reveal static regions of the subunit interface.
    Chervitz SA; Lin CM; Falke JJ
    Biochemistry; 1995 Aug; 34(30):9722-33. PubMed ID: 7626643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Escherichia coli aspartate receptor: sequence specificity of a transmembrane helix studied by hydrophobic-biased random mutagenesis.
    Jeffery CJ; Koshland DE
    Protein Eng; 1999 Oct; 12(10):863-72. PubMed ID: 10556247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a site critical for kinase regulation on the central processing unit (CPU) helix of the aspartate receptor.
    Trammell MA; Falke JJ
    Biochemistry; 1999 Jan; 38(1):329-36. PubMed ID: 9890914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Side chains at the membrane-water interface modulate the signaling state of a transmembrane receptor.
    Miller AS; Falke JJ
    Biochemistry; 2004 Feb; 43(7):1763-70. PubMed ID: 14967017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lock on/off disulfides identify the transmembrane signaling helix of the aspartate receptor.
    Chervitz SA; Falke JJ
    J Biol Chem; 1995 Oct; 270(41):24043-53. PubMed ID: 7592603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmembrane signalling and the aspartate receptor.
    Scott WG; Stoddard BL
    Structure; 1994 Sep; 2(9):877-87. PubMed ID: 7812719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine and disulfide scanning reveals a regulatory alpha-helix in the cytoplasmic domain of the aspartate receptor.
    Danielson MA; Bass RB; Falke JJ
    J Biol Chem; 1997 Dec; 272(52):32878-88. PubMed ID: 9407066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tryptophan residues flanking the second transmembrane helix (TM2) set the signaling state of the Tar chemoreceptor.
    Draheim RR; Bormans AF; Lai RZ; Manson MD
    Biochemistry; 2005 Feb; 44(4):1268-77. PubMed ID: 15667220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model for transmembrane signalling by the aspartate receptor based on random-cassette mutagenesis and site-directed disulfide cross-linking.
    Maruyama IN; Mikawa YG; Maruyama HI
    J Mol Biol; 1995 Nov; 253(4):530-46. PubMed ID: 7473732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine and disulfide scanning reveals two amphiphilic helices in the linker region of the aspartate chemoreceptor.
    Butler SL; Falke JJ
    Biochemistry; 1998 Jul; 37(30):10746-56. PubMed ID: 9692965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor.
    Kim KK; Yokota H; Kim SH
    Nature; 1999 Aug; 400(6746):787-92. PubMed ID: 10466731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation mechanism of the aspartate receptor: electrostatics of the adaptation subdomain play a key role in modulating kinase activity.
    Starrett DJ; Falke JJ
    Biochemistry; 2005 Feb; 44(5):1550-60. PubMed ID: 15683239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved glycine residues in the cytoplasmic domain of the aspartate receptor play essential roles in kinase coupling and on-off switching.
    Coleman MD; Bass RB; Mehan RS; Falke JJ
    Biochemistry; 2005 May; 44(21):7687-95. PubMed ID: 15909983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refined structures of the ligand-binding domain of the aspartate receptor from Salmonella typhimurium.
    Scott WG; Milligan DL; Milburn MV; Privé GG; Yeh J; Koshland DE; Kim SH
    J Mol Biol; 1993 Jul; 232(2):555-73. PubMed ID: 8345523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signaling domain of the aspartate receptor is a helical hairpin with a localized kinase docking surface: cysteine and disulfide scanning studies.
    Bass RB; Coleman MD; Falke JJ
    Biochemistry; 1999 Jul; 38(29):9317-27. PubMed ID: 10413506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A piston model for transmembrane signaling of the aspartate receptor.
    Ottemann KM; Xiao W; Shin YK; Koshland DE
    Science; 1999 Sep; 285(5434):1751-4. PubMed ID: 10481014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The composition rather than position of polar residues (QxxS) drives aspartate receptor transmembrane domain dimerization in vivo.
    Sal-Man N; Gerber D; Shai Y
    Biochemistry; 2004 Mar; 43(8):2309-13. PubMed ID: 14979727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The region preceding the C-terminal NWETF pentapeptide modulates baseline activity and aspartate inhibition of Escherichia coli Tar.
    Lai RZ; Bormans AF; Draheim RR; Wright GA; Manson MD
    Biochemistry; 2008 Dec; 47(50):13287-95. PubMed ID: 19053273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational changes in the cytoplasmic domain of the Escherichia coli aspartate receptor upon adaptive methylation.
    Le Moual H; Quang T; Koshland DE
    Biochemistry; 1998 Oct; 37(42):14852-9. PubMed ID: 9778360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.