These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8142359)

  • 21. Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure.
    Suckow J; Markiewicz P; Kleina LG; Miller J; Kisters-Woike B; Müller-Hill B
    J Mol Biol; 1996 Aug; 261(4):509-23. PubMed ID: 8794873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of two mutant lactose repressor proteins containing single tryptophans.
    Gardner JA; Matthews KS
    J Biol Chem; 1990 Dec; 265(34):21061-7. PubMed ID: 2250012
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional impact of polar and acidic substitutions in the lactose repressor hydrophobic monomer.monomer interface with a buried lysine.
    Zhan H; Sun Z; Matthews KS
    Biochemistry; 2009 Feb; 48(6):1305-14. PubMed ID: 19166325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A closer view of the conformation of the Lac repressor bound to operator.
    Bell CE; Lewis M
    Nat Struct Biol; 2000 Mar; 7(3):209-14. PubMed ID: 10700279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combinatorial mutations of lac repressor. Stability of monomer-monomer interface is increased by apolar substitution at position 84.
    Nichols JC; Matthews KS
    J Biol Chem; 1997 Jul; 272(30):18550-7. PubMed ID: 9228020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A molecular model of the inducer binding domain of the galactose repressor of Escherichia coli.
    Hsieh M; Hensley P; Brenowitz M; Fetrow JS
    J Biol Chem; 1994 May; 269(19):13825-35. PubMed ID: 8188660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp. YM55-1.
    Puthan Veetil V; Raj H; Quax WJ; Janssen DB; Poelarends GJ
    FEBS J; 2009 Jun; 276(11):2994-3007. PubMed ID: 19490103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subunit dissociation affects DNA binding in a dimeric lac repressor produced by C-terminal deletion.
    Chen J; Matthews KS
    Biochemistry; 1994 Jul; 33(29):8728-35. PubMed ID: 8038163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model of lactose repressor core based on alignment with sugar-binding proteins is concordant with genetic and chemical data.
    Nichols JC; Vyas NK; Quiocho FA; Matthews KS
    J Biol Chem; 1993 Aug; 268(23):17602-12. PubMed ID: 8349639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dimerisation mutants of Lac repressor. II. A single amino acid substitution, D278L, changes the specificity of dimerisation.
    Spott S; Dong F; Kisters-Woike B; Müller-Hill B
    J Mol Biol; 2000 Feb; 296(2):673-84. PubMed ID: 10669616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Escherichia coli lac repressor-lac operator interaction and the influence of allosteric effectors.
    Horton N; Lewis M; Lu P
    J Mol Biol; 1997 Jan; 265(1):1-7. PubMed ID: 8995519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Escherichia coli purine repressor: key residues for the allosteric transition between active and inactive conformations and for interdomain signaling.
    Lu F; Brennan RG; Zalkin H
    Biochemistry; 1998 Nov; 37(45):15680-90. PubMed ID: 9843372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A phospho-sugar binding domain homologous to NagB enzymes regulates the activity of the central glycolytic genes repressor.
    Doan T; Martin L; Zorrilla S; Chaix D; Aymerich S; Labesse G; Declerck N
    Proteins; 2008 Jun; 71(4):2038-50. PubMed ID: 18186488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The lac repressor.
    Lewis M
    C R Biol; 2005 Jun; 328(6):521-48. PubMed ID: 15950160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Teaching TetR to recognize a new inducer.
    Scholz O; Köstner M; Reich M; Gastiger S; Hillen W
    J Mol Biol; 2003 May; 329(2):217-27. PubMed ID: 12758071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A single amino acid substitution in the active site of Escherichia coli aspartate transcarbamoylase prevents the allosteric transition.
    Stieglitz KA; Pastra-Landis SC; Xia J; Tsuruta H; Kantrowitz ER
    J Mol Biol; 2005 Jun; 349(2):413-23. PubMed ID: 15890205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as "spacers" which do not require a specific sequence.
    Markiewicz P; Kleina LG; Cruz C; Ehret S; Miller JH
    J Mol Biol; 1994 Jul; 240(5):421-33. PubMed ID: 8046748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrated insights from simulation, experiment, and mutational analysis yield new details of LacI function.
    Swint-Kruse L; Zhan H; Matthews KS
    Biochemistry; 2005 Aug; 44(33):11201-13. PubMed ID: 16101304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ligand-induced conformational changes in lactose repressor: a phosphorescence and ODMR study of single-tryptophan mutants.
    Ozarowski A; Barry JK; Matthews KS; Maki AH
    Biochemistry; 1999 May; 38(21):6715-22. PubMed ID: 10346891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.