These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 8142360)
1. Factors affecting the stability and conformation of Locusta migratoria apolipophorin III. Weers PM; Kay CM; Oikawa K; Wientzek M; Van der Horst DJ; Ryan RO Biochemistry; 1994 Mar; 33(12):3617-24. PubMed ID: 8142360 [TBL] [Abstract][Full Text] [Related]
2. Binding of insect apolipophorin III to dimyristoylphosphatidylcholine vesicles. Evidence for a conformational change. Wientzek M; Kay CM; Oikawa K; Ryan RO J Biol Chem; 1994 Feb; 269(6):4605-12. PubMed ID: 8308032 [TBL] [Abstract][Full Text] [Related]
3. Spectroscopic characterization of the conformational adaptability of Bombyx mori apolipophorin III. Narayanaswami V; Yamauchi Y; Weers PM; Maekawa H; Sato R; Tsuchida K; Oikawa K; Kay CM; Ryan RO Eur J Biochem; 2000 Feb; 267(3):728-36. PubMed ID: 10651809 [TBL] [Abstract][Full Text] [Related]
4. Lipid binding of the exchangeable apolipoprotein apolipophorin III induces major changes in fluorescence properties of tryptophans 115 and 130. Weers PM; Prenner EJ; Kay C; Ryan RO Biochemistry; 2000 Jun; 39(23):6874-80. PubMed ID: 10841768 [TBL] [Abstract][Full Text] [Related]
5. Conformational changes of an exchangeable apolipoprotein, apolipophorin III from Locusta migratoria, at low pH: correlation with lipid binding. Weers PM; Kay CM; Ryan RO Biochemistry; 2001 Jun; 40(25):7754-60. PubMed ID: 11412130 [TBL] [Abstract][Full Text] [Related]
6. Conformational, thermodynamic, and stability properties of Manduca sexta apolipophorin III. Ryan RO; Oikawa K; Kay CM J Biol Chem; 1993 Jan; 268(3):1525-30. PubMed ID: 8420928 [TBL] [Abstract][Full Text] [Related]
7. Role of glycosylation in the lipid-binding activity of the exchangeable apolipoprotein, apolipophorin-III. Soulages JL; Pennington J; Bendavid O; Wells MA Biochem Biophys Res Commun; 1998 Feb; 243(2):372-6. PubMed ID: 9480816 [TBL] [Abstract][Full Text] [Related]
8. Spectroscopic and lipid binding studies on the amino and carboxyl terminal fragments of Locusta migratoria apolipophorin III. Narayanaswami V; Weers PM; Bogerd J; Kooiman FP; Kay CM; Scraba DG; Van der Horst DJ; Ryan RO Biochemistry; 1995 Sep; 34(37):11822-30. PubMed ID: 7547916 [TBL] [Abstract][Full Text] [Related]
9. An N-terminal three-helix fragment of the exchangeable insect apolipoprotein apolipophorin III conserves the lipid binding properties of wild-type protein. Dettloff M; Weers PM; Niere M; Kay CM; Ryan RO; Wiesner A Biochemistry; 2001 Mar; 40(10):3150-7. PubMed ID: 11258930 [TBL] [Abstract][Full Text] [Related]
10. Interaction of an exchangeable apolipoprotein with phospholipid vesicles and lipoprotein particles. Role of leucines 32, 34, and 95 in Locusta migratoria apolipophorin III. Weers PM; Narayanaswami V; Kay CM; Ryan RO J Biol Chem; 1999 Jul; 274(31):21804-10. PubMed ID: 10419496 [TBL] [Abstract][Full Text] [Related]
11. Role of buried polar residues in helix bundle stability and lipid binding of apolipophorin III: destabilization by threonine 31. Weers PM; Abdullahi WE; Cabrera JM; Hsu TC Biochemistry; 2005 Jun; 44(24):8810-6. PubMed ID: 15952787 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence spectroscopy of single tryptophan mutants of apolipophorin-III in discoidal lipoproteins of dimyristoylphosphatidylcholine. Soulages JL; Arrese EL Biochemistry; 2000 Aug; 39(34):10574-80. PubMed ID: 10956049 [TBL] [Abstract][Full Text] [Related]
13. Lipid-triggered conformational switch of apolipophorin III helix bundle to an extended helix organization. Sahoo D; Weers PM; Ryan RO; Narayanaswami V J Mol Biol; 2002 Aug; 321(2):201-14. PubMed ID: 12144779 [TBL] [Abstract][Full Text] [Related]
15. Pyrene excimer fluorescence: a spatially sensitive probe to monitor lipid-induced helical rearrangement of apolipophorin III. Sahoo D; Narayanaswami V; Kay CM; Ryan RO Biochemistry; 2000 Jun; 39(22):6594-601. PubMed ID: 10828977 [TBL] [Abstract][Full Text] [Related]
16. Apolipophorin III interaction with model membranes composed of phosphatidylcholine and sphingomyelin using differential scanning calorimetry. Chiu MH; Wan CP; Weers PM; Prenner EJ Biochim Biophys Acta; 2009 Oct; 1788(10):2160-8. PubMed ID: 19647717 [TBL] [Abstract][Full Text] [Related]
17. Insect apolipophorin III: interaction of locust apolipophorin III with diacylglycerol. Demel RA; Van Doorn JM; Van der Horst DJ Biochim Biophys Acta; 1992 Mar; 1124(2):151-8. PubMed ID: 1543737 [TBL] [Abstract][Full Text] [Related]
18. Interaction of locust apolipophorin III with lipoproteins and phospholipid vesicles: effect of glycosylation. Weers PM; Van Der Horst DJ; Ryan RO J Lipid Res; 2000 Mar; 41(3):416-23. PubMed ID: 10706589 [TBL] [Abstract][Full Text] [Related]
19. Recombinant locust apolipophorin III: characterization and NMR spectroscopy. Weers PM; Wang J; Van der Horst DJ; Kay CM; Sykes BD; Ryan RO Biochim Biophys Acta; 1998 Jul; 1393(1):99-107. PubMed ID: 9714761 [TBL] [Abstract][Full Text] [Related]
20. Insect immune activation by apolipophorin III is correlated with the lipid-binding properties of this protein. Niere M; Dettloff M; Maier T; Ziegler M; Wiesner A Biochemistry; 2001 Sep; 40(38):11502-8. PubMed ID: 11560498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]