These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8142404)

  • 1. Amidrazone analogues of D-ribofuranose as transition-state inhibitors of nucleoside hydrolase.
    Boutellier M; Horenstein BA; Semenyaka A; Schramm VL; Ganem B
    Biochemistry; 1994 Apr; 33(13):3994-4000. PubMed ID: 8142404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trypanosomal nucleoside hydrolase. Resonance Raman spectroscopy of a transition-state inhibitor complex.
    Deng H; Chan AW; Bagdassarian CK; Estupiñán B; Ganem B; Callender RH; Schramm VL
    Biochemistry; 1996 May; 35(19):6037-47. PubMed ID: 8634245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of the molecular electrostatic potential surface of an enzymatic transition state with novel transition-state inhibitors.
    Horenstein BA; Schramm VL
    Biochemistry; 1993 Sep; 32(38):9917-25. PubMed ID: 8399161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding modes for substrate and a proposed transition-state analogue of protozoan nucleoside hydrolase.
    Parkin DW; Schramm VL
    Biochemistry; 1995 Oct; 34(42):13961-6. PubMed ID: 7577992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic nature of the transition state for nucleoside hydrolase. A blueprint for inhibitor design.
    Horenstein BA; Schramm VL
    Biochemistry; 1993 Jul; 32(28):7089-97. PubMed ID: 8343502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guanosine-inosine-preferring nucleoside N-glycohydrolase from Crithidia fasciculata.
    Estupiñán B; Schramm VL
    J Biol Chem; 1994 Sep; 269(37):23068-73. PubMed ID: 8083208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional structure of the inosine-uridine nucleoside N-ribohydrolase from Crithidia fasciculata.
    Degano M; Gopaul DN; Scapin G; Schramm VL; Sacchettini JC
    Biochemistry; 1996 May; 35(19):5971-81. PubMed ID: 8634238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition-state analysis of nucleoside hydrolase from Crithidia fasciculata.
    Horenstein BA; Parkin DW; Estupiñán B; Schramm VL
    Biochemistry; 1991 Nov; 30(44):10788-95. PubMed ID: 1931998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isozyme-specific transition state inhibitors for the trypanosomal nucleoside hydrolases.
    Parkin DW; Limberg G; Tyler PC; Furneaux RH; Chen XY; Schramm VL
    Biochemistry; 1997 Mar; 36(12):3528-34. PubMed ID: 9132003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iminoribitol transition state analogue inhibitors of protozoan nucleoside hydrolases.
    Miles RW; Tyler PC; Evans GB; Furneaux RH; Parkin DW; Schramm VL
    Biochemistry; 1999 Oct; 38(40):13147-54. PubMed ID: 10529186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic potential surface analysis of the transition state for AMP nucleosidase and for formycin 5'-phosphate, a transition-state inhibitor.
    Ehrlich JI; Schramm VL
    Biochemistry; 1994 Aug; 33(30):8890-6. PubMed ID: 8043576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer simulations of trypanosomal nucleoside hydrolase: determination of the protonation state of the bound transition-state analogue.
    Mazumder D; Kahn K; Bruice TC
    J Am Chem Soc; 2002 Jul; 124(30):8825-33. PubMed ID: 12137535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of inhibitor binding free energies by quantum neural networks. Nucleoside analogues binding to trypanosomal nucleoside hydrolase.
    Braunheim BB; Miles RW; Schramm VL; Schwartz SD
    Biochemistry; 1999 Dec; 38(49):16076-83. PubMed ID: 10587430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition-state structures for N-glycoside hydrolysis of AMP by acid and by AMP nucleosidase in the presence and absence of allosteric activator.
    Mentch F; Parkin DW; Schramm VL
    Biochemistry; 1987 Feb; 26(3):921-30. PubMed ID: 3552038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-steady-state transition-state analysis of the hydrolytic reaction catalyzed by purine nucleoside phosphorylase.
    Kline PC; Schramm VL
    Biochemistry; 1995 Jan; 34(4):1153-62. PubMed ID: 7827065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of kinetic isotope effects for nucleoside hydrolases using gas chromatography/mass spectrometry.
    Kline PC; Rezaee M; Lee TA
    Anal Biochem; 1999 Nov; 275(1):6-10. PubMed ID: 10542103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-third-the-sites transition-state inhibitors for purine nucleoside phosphorylase.
    Miles RW; Tyler PC; Furneaux RH; Bagdassarian CK; Schramm VL
    Biochemistry; 1998 Jun; 37(24):8615-21. PubMed ID: 9628722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and inhibition of a quorum sensing target from Streptococcus pneumoniae.
    Singh V; Shi W; Almo SC; Evans GB; Furneaux RH; Tyler PC; Painter GF; Lenz DH; Mee S; Zheng R; Schramm VL
    Biochemistry; 2006 Oct; 45(43):12929-41. PubMed ID: 17059210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleoside hydrolase from Crithidia fasciculata. Metabolic role, purification, specificity, and kinetic mechanism.
    Parkin DW; Horenstein BA; Abdulah DR; Estupiñán B; Schramm VL
    J Biol Chem; 1991 Nov; 266(31):20658-65. PubMed ID: 1939115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition state structure of purine nucleoside phosphorylase and principles of atomic motion in enzymatic catalysis.
    Fedorov A; Shi W; Kicska G; Fedorov E; Tyler PC; Furneaux RH; Hanson JC; Gainsford GJ; Larese JZ; Schramm VL; Almo SC
    Biochemistry; 2001 Jan; 40(4):853-60. PubMed ID: 11170405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.