These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8142424)

  • 1. Internal Ca2+ ions inactivate and modify ATP-sensitive potassium channels in adult mouse skeletal muscle.
    Hehl S; Moser C; Weik R; Neumcke B
    Biochim Biophys Acta; 1994 Mar; 1190(2):257-63. PubMed ID: 8142424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KATP channels of mouse skeletal muscle: mechanism of channel blockage by AMP-PNP.
    Hehl S; Neumcke B
    Eur Biophys J; 1994; 23(4):231-7. PubMed ID: 7805625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diverse effects of pinacidil on KATP channels in mouse skeletal muscle in the presence of different nucleotides.
    Hehl S; Neumcke B
    Cardiovasc Res; 1994 Jun; 28(6):841-6. PubMed ID: 7923289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual effects of calcium on ATP-sensitive potassium channels of frog skeletal muscle.
    Krippeit-Drews P; Lönnendonker U
    Biochim Biophys Acta; 1992 Jul; 1108(1):119-22. PubMed ID: 1643077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vanadate as an activator of ATP--sensitive potassium channels in mouse skeletal muscle.
    Neumcke B; Weik R
    Eur Biophys J; 1991; 19(3):119-23. PubMed ID: 2060492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-conductance Ca2+-activated potassium channels in secretory neurons.
    Lara J; Acevedo JJ; Onetti CG
    J Neurophysiol; 1999 Sep; 82(3):1317-25. PubMed ID: 10482751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of potassium channel openers on single potassium channels in mouse skeletal muscle.
    Weik R; Neumcke B
    Naunyn Schmiedebergs Arch Pharmacol; 1990 Sep; 342(3):258-63. PubMed ID: 2280794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Similarity of ATP-dependent K+ channels in skeletal muscle fibres from normal and mutant mdx mice.
    Allard B; Rougier O
    J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):319-25. PubMed ID: 9032681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rundown and reactivation of ATP-sensitive potassium channels (KATP) in mouse skeletal muscle.
    Hussain M; Wareham AC
    J Membr Biol; 1994 Sep; 141(3):257-65. PubMed ID: 7807525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells.
    Han X; Light PE; Giles WR; French RJ
    J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):337-50. PubMed ID: 8821133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface charge and properties of cardiac ATP-sensitive K+ channels.
    Deutsch N; Matsuoka S; Weiss JN
    J Gen Physiol; 1994 Oct; 104(4):773-800. PubMed ID: 7836941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of ATP-sensitive potassium channels functionally expressed in pituitary GH3 cells.
    Wu SN; Li HF; Chiang HT
    J Membr Biol; 2000 Dec; 178(3):205-14. PubMed ID: 11140276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block.
    Rusko J; Tanzi F; van Breemen C; Adams DJ
    J Physiol; 1992 Sep; 455():601-21. PubMed ID: 1484364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent fading of the activation of KATP channels, induced by aprikalim and nucleotides, in excised membrane patches from cardiac myocytes.
    Thuringer D; Cavero I; Coraboeuf E
    Br J Pharmacol; 1995 May; 115(1):117-27. PubMed ID: 7647966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of ATP-sensitive K+ channels of mouse skeletal muscle by disopyramide.
    Moser C; Hehl S; Neumcke B
    Eur J Pharmacol; 1995 Sep; 284(1-2):35-41. PubMed ID: 8549634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia activates ATP-dependent potassium channels in inspiratory neurones of neonatal mice.
    Mironov SL; Langohr K; Haller M; Richter DW
    J Physiol; 1998 Jun; 509 ( Pt 3)(Pt 3):755-66. PubMed ID: 9596797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of K+ channels by intracellular ATP in human neocortical neurons.
    Jiang C; Haddad GG
    J Neurophysiol; 1997 Jan; 77(1):93-102. PubMed ID: 9120601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-sensitive K+ channels of skeletal muscle fibers from young adult and aged rats: possible involvement of thiol-dependent redox mechanisms in the age-related modifications of their biophysical and pharmacological properties.
    Tricarico D; Camerino DC
    Mol Pharmacol; 1994 Oct; 46(4):754-61. PubMed ID: 7969056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP-sensitive K+ channel modification by metabolic inhibition in isolated guinea-pig ventricular myocytes.
    Deutsch N; Weiss JN
    J Physiol; 1993 Jun; 465():163-79. PubMed ID: 8229832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP-sensitive potassium channels in adult mouse skeletal muscle: characterization of the ATP-binding site.
    Weik R; Neumcke B
    J Membr Biol; 1989 Sep; 110(3):217-26. PubMed ID: 2810349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.