These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 8142445)
1. Local anesthetics destabilize lipid membranes by breaking hydration shell: infrared and calorimetry studies. Ueda I; Chiou JS; Krishna PR; Kamaya H Biochim Biophys Acta; 1994 Mar; 1190(2):421-9. PubMed ID: 8142445 [TBL] [Abstract][Full Text] [Related]
2. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related]
3. Effect of local anesthetics on the bilayer membrane of dipalmitoylphosphatidylcholine: interdigitation of lipid bilayer and vesicle-micelle transition. Hata T; Matsuki H; Kaneshina S Biophys Chem; 2000 Sep; 87(1):25-36. PubMed ID: 11036967 [TBL] [Abstract][Full Text] [Related]
4. Infrared spectra of phospholipid membranes: interfacial dehydration by volatile anesthetics and phase transition. Tsai YS; Ma SM; Nishimura S; Ueda I Biochim Biophys Acta; 1990 Feb; 1022(2):245-50. PubMed ID: 2306457 [TBL] [Abstract][Full Text] [Related]
5. [The anesthetic effects of steroids and their actions on the properties of model membrane]. Tatara T Masui; 1992 Sep; 41(9):1419-25. PubMed ID: 1433872 [TBL] [Abstract][Full Text] [Related]
6. Alcohols dehydrate lipid membranes: an infrared study on hydrogen bonding. Chiou JS; Krishna PR; Kamaya H; Ueda I Biochim Biophys Acta; 1992 Oct; 1110(2):225-33. PubMed ID: 1390852 [TBL] [Abstract][Full Text] [Related]
7. Fourier transform infrared studies on phospholipid hydration: phosphate-oriented hydrogen bonding and its attenuation by volatile anesthetics. Tsai YS; Ma SM; Kamaya H; Ueda I Mol Pharmacol; 1987 Jun; 31(6):623-30. PubMed ID: 3600607 [TBL] [Abstract][Full Text] [Related]
8. Polymorphism of the bilayer membranes in the ordered phase and the molecular origin of the lipid pretransition and rippled lamellae. Cevc G Biochim Biophys Acta; 1991 Feb; 1062(1):59-69. PubMed ID: 1998710 [TBL] [Abstract][Full Text] [Related]
9. Differential scanning calorimetry and (2)H nuclear magnetic resonance and Fourier transform infrared spectroscopy studies of the effects of transmembrane alpha-helical peptides on the organization of phosphatidylcholine bilayers. Paré C; Lafleur M; Liu F; Lewis RN; McElhaney RN Biochim Biophys Acta; 2001 Mar; 1511(1):60-73. PubMed ID: 11248205 [TBL] [Abstract][Full Text] [Related]
10. Interaction between artificial membranes and enflurane, a general volatile anesthetic: DPPC-enflurane interaction. Hauet N; Artzner F; Boucher F; Grabielle-Madelmont C; Cloutier I; Keller G; Lesieur P; Durand D; Paternostre M Biophys J; 2003 May; 84(5):3123-37. PubMed ID: 12719242 [TBL] [Abstract][Full Text] [Related]
11. Melatonin strongly interacts with zwitterionic model membranes--evidence from Fourier transform infrared spectroscopy and differential scanning calorimetry. Severcan F; Sahin I; Kazanci N Biochim Biophys Acta; 2005 Mar; 1668(2):215-22. PubMed ID: 15737332 [TBL] [Abstract][Full Text] [Related]
12. The influence of local anesthetics on the gel-liquid crystal phase transition in model dipalmitoylphosphatidylcholine membranes. Racanský V; Béderová E; Pisková L Gen Physiol Biophys; 1988 Apr; 7(2):217-21. PubMed ID: 2839393 [TBL] [Abstract][Full Text] [Related]
13. A DSC and FTIR spectroscopic study of the effects of the epimeric cholestan-3-ols and cholestan-3-one on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogs. Benesch MG; Lewis RN; Mannock DA; McElhaney RN Chem Phys Lipids; 2015 Apr; 187():34-49. PubMed ID: 25732198 [TBL] [Abstract][Full Text] [Related]
14. Local anesthetics induce interdigitation and thermotropic changes in dipalmitoylphosphatidylcholine bilayers. Reddy ST; Shrivastava S; Chattopadhyay A Chem Phys Lipids; 2018 Jan; 210():22-27. PubMed ID: 29275150 [TBL] [Abstract][Full Text] [Related]
15. Lipid-mediated mode of action of local anesthetics on lipid pores induced by polyenes, peptides and lipopeptides. Efimova SS; Chulkov EG; Ostroumova OS Colloids Surf B Biointerfaces; 2018 Jun; 166():1-8. PubMed ID: 29525621 [TBL] [Abstract][Full Text] [Related]
16. Effects of the anesthetic steroid alphaxalone and its inactive delta 16-analog on the thermotropic properties of membrane bilayers. A model for membrane perturbation. Mavromoustakos T; Yang DP; Makriyannis A Biochim Biophys Acta; 1995 Nov; 1239(2):257-64. PubMed ID: 7488631 [TBL] [Abstract][Full Text] [Related]
17. Effects of pressure and local anesthetic tetracaine on dipalmitoylphosphatidylcholine bilayers. Maruyama S; Hata T; Matsuki H; Kaneshina S Biochim Biophys Acta; 1997 Apr; 1325(2):272-80. PubMed ID: 9168152 [TBL] [Abstract][Full Text] [Related]
18. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552 [TBL] [Abstract][Full Text] [Related]
19. Interdigitation and vesicle-to-micelle transformation induced by a local anesthetic tetracaine in phospholipids bilayers. Takeda K; Okuno H; Hata T; Nishimoto M; Matsuki H; Kaneshina S Colloids Surf B Biointerfaces; 2009 Aug; 72(1):135-40. PubMed ID: 19403276 [TBL] [Abstract][Full Text] [Related]
20. Structure and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine bilayer membranes. Shah J; Duclos RI; Shipley GG Biophys J; 1994 May; 66(5):1469-78. PubMed ID: 8061196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]