BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 8142590)

  • 1. Specificity of trypsin digestion and conformational flexibility at different sites of unfolded lysozyme.
    Noda Y; Fujiwara K; Yamamoto K; Fukuno T; Segawa S
    Biopolymers; 1994 Feb; 34(2):217-26. PubMed ID: 8142590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass spectrometric identification of the trypsin cleavage pathway in lysyl-proline containing oligotuftsin peptides.
    Manea M; Mezo G; Hudecz F; Przybylski M
    J Pept Sci; 2007 Apr; 13(4):227-36. PubMed ID: 17394121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bare-faced curassow lysozyme carrying amino acid substitutions at subsites E and F shows a change in activity against chitooligosaccharide caused by a local conformational change.
    Araki T; Seki S; Hirakawa H; Chijiiwa Y; Kawamura S; Kuhara S; Torikata T
    J Biochem; 2004 Oct; 136(4):485-93. PubMed ID: 15625318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of limited solid-state glycation on the conformation of lysozyme by ESI-MSMS peptide mapping and molecular modeling.
    Yeboah FK; Alli I; Yaylayan VA; Yasuo K; Chowdhury SF; Purisima EO
    Bioconjug Chem; 2004; 15(1):27-34. PubMed ID: 14733580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of beta-casein hydrolysis by wild-type and engineered trypsin.
    Vorob'ev MM; Dalgalarrondo M; Chobert JM; Haertlé T
    Biopolymers; 2000 Oct; 54(5):355-64. PubMed ID: 10935975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transition state in the folding-unfolding reaction of four species of three-disulfide variant of hen lysozyme: the role of each disulfide bridge.
    Yokota A; Izutani K; Takai M; Kubo Y; Noda Y; Koumoto Y; Tachibana H; Segawa S
    J Mol Biol; 2000 Feb; 295(5):1275-88. PubMed ID: 10653703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the insertion loop around tryptophan 148 in tthe activity of thrombin.
    DiBella EE; Scheraga HA
    Biochemistry; 1996 Apr; 35(14):4427-33. PubMed ID: 8605192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Setting the stage for new catalytic functions in designed proteins--exploring the imine pathway in the efficient decarboxylation of oxaloacetate by an Arg-Lys site in a four-helix bundle protein scaffold.
    Allert M; Baltzer L
    Chemistry; 2002 Jun; 8(11):2549-60. PubMed ID: 12180334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The behavior of the active site salt bridge of bovine neurophysins as monitored by 15N NMR spectroscopy and chemical substitution. Relationship to biochemical properties.
    Zheng C; Cahill S; Breslow E
    Biochemistry; 1996 Sep; 35(36):11763-72. PubMed ID: 8794757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the S1' subsite of trypsin: design of a protease which cleaves between dibasic residues.
    Kurth T; Grahn S; Thormann M; Ullmann D; Hofmann HJ; Jakubke HD; Hedstrom L
    Biochemistry; 1998 Aug; 37(33):11434-40. PubMed ID: 9708978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors.
    Veenstra JA
    Arch Insect Biochem Physiol; 2000 Feb; 43(2):49-63. PubMed ID: 10644969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tryptic hydrolysis of hGH-RH(1-29)-NH2 analogues containing Lys or Orn in positions 12 and 21.
    Witkowska E; Orłowska A; Sagan B; Smoluch M; Izdebski J
    J Pept Sci; 2001 Mar; 7(3):166-72. PubMed ID: 11297353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition-metal complexes as enzyme-like reagents for protein cleavage: complex cis-[Pt(en)(H2O)2]2+ as a new methionine-specific protease.
    Milović NM; Dutca LM; Kostić NM
    Chemistry; 2003 Oct; 9(20):5097-106. PubMed ID: 14562327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domain organization and DNA-induced conformational changes of an archaeal family B DNA polymerase.
    Pisani FM; Manco G; Carratore V; Rossi M
    Biochemistry; 1996 Jul; 35(28):9158-66. PubMed ID: 8703921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the conformation of NhaA, a Na+/H+ antiporter from Escherichia coli, with trypsin.
    Rothman A; Gerchman Y; Padan E; Schuldiner S
    Biochemistry; 1997 Nov; 36(47):14572-6. PubMed ID: 9398175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trypsin: a case study in the structural determinants of enzyme specificity.
    Hedstrom L
    Biol Chem; 1996; 377(7-8):465-70. PubMed ID: 8922280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of a hydrophobically collapsed intermediate on the conformational folding pathway of ribonuclease A probed by hydrogen-deuterium exchange.
    Houry WA; Scheraga HA
    Biochemistry; 1996 Sep; 35(36):11734-46. PubMed ID: 8794754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local structures in unfolded lysozyme and correlation with secondary structures in the native conformation: helix-forming or -breaking propensity of peptide segments.
    Segawa S; Fukuno T; Fujiwara K; Noda Y
    Biopolymers; 1991 Apr; 31(5):497-509. PubMed ID: 1868165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of prostaglandin H synthase isoform structures using limited proteolytic digestion.
    Guo Q; Chang S; Diekman L; Xiao G; Kulmacz RJ
    Arch Biochem Biophys; 1997 Aug; 344(1):150-8. PubMed ID: 9244392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.
    Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS
    Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.