These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8142697)

  • 1. Quiescence and transient growth dynamics in chemostat models.
    Jäger W; Krömker S; Tang B
    Math Biosci; 1994 Feb; 119(2):225-39. PubMed ID: 8142697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Population dynamics and competition in chemostat models with adaptive nutrient uptake.
    Tang B; Sitomer A; Jackson T
    J Math Biol; 1997 Mar; 35(4):453-79. PubMed ID: 9104013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The attractiveness of the Droop equations.
    Lange K; Oyarzun FJ
    Math Biosci; 1992 Oct; 111(2):261-78. PubMed ID: 1515747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical studies on the coexistence of competing species under continuous-flow conditions.
    Taylor PA; leB Williams PJ
    Can J Microbiol; 1975 Jan; 21(1):90-8. PubMed ID: 1116041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability in chemostat equations with delayed nutrient recycling.
    Beretta E; Bischi GI; Solimano F
    J Math Biol; 1990; 28(1):99-111. PubMed ID: 2307915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The attractiveness of the Droop equations. II. Generic uptake and growth functions.
    Oyarzun FJ; Lange K
    Math Biosci; 1994 Jun; 121(2):127-39. PubMed ID: 8054762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical and empirical investigation of delayed growth response in the continuous culture of bacteria.
    Ellermeyer S; Hendrix J; Ghoochan N
    J Theor Biol; 2003 Jun; 222(4):485-94. PubMed ID: 12781747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to determine control of growth rate in a chemostat. Using metabolic control analysis to resolve the paradox.
    Snoep JL; Jensen PR; Groeneveld P; Molenaar D; Kholodenko BN; Westerhoff HV
    Biochem Mol Biol Int; 1994 Aug; 33(5):1023-32. PubMed ID: 7987249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial predation in a periodically operated chemostat: a global study of the interaction between natural and externally imposed frequencies.
    Pavlou S; Kevrekidis IG
    Math Biosci; 1992 Feb; 108(1):1-55. PubMed ID: 1550993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principles of designing mathematical models of microorganisms.
    Muzychenko LA; Valuev VI
    Folia Microbiol (Praha); 1980; 25(3):259-69. PubMed ID: 7399374
    [No Abstract]   [Full Text] [Related]  

  • 11. The influence of growth rate and nutrient limitation on the microbial composition and biochemical properties of a mixed culture of oral bacteria grown in a chemostat.
    Marsh PD; Hunter JR; Bowden GH; Hamilton IR; McKee AS; Hardie JM; Ellwood DC
    J Gen Microbiol; 1983 Mar; 129(3):755-70. PubMed ID: 6348208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competition for mixed substrates by microbial populations.
    Yoon H; Klinzing G; Blanch HW
    Biotechnol Bioeng; 1977 Aug; 19(8):1193-210. PubMed ID: 884234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate.
    Lenas P; Pavlou S
    Math Biosci; 1995 Oct; 129(2):111-42. PubMed ID: 7549217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A resource-based model of microbial quiescence.
    Malik T; Smith H
    J Math Biol; 2006 Aug; 53(2):231-52. PubMed ID: 16680470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient oscillations induced by delayed growth response in the chemostat.
    Xia H; Wolkowicz GS; Wang L
    J Math Biol; 2005 May; 50(5):489-530. PubMed ID: 15772824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for the competitive growth of two diatoms.
    Ross GG
    J Theor Biol; 1973 Nov; 42(2):307-31. PubMed ID: 4762957
    [No Abstract]   [Full Text] [Related]  

  • 17. Protozoan feeding and bacterial wall growth.
    Bonomi A; Fredrickson AG
    Biotechnol Bioeng; 1976 Feb; 18(2):239-52. PubMed ID: 1267931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theory of interacting microbial populations: multigroup approach.
    Villarreal E; Akcasu Z; Canale RP
    J Theor Biol; 1976 May; 58(2):285-317. PubMed ID: 945853
    [No Abstract]   [Full Text] [Related]  

  • 19. Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics.
    Kovárová-Kovar K; Egli T
    Microbiol Mol Biol Rev; 1998 Sep; 62(3):646-66. PubMed ID: 9729604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of interactions, sessile growth and nutrient amendments on the degradative efficiency of a microbial consortium.
    Wolfaardt GM; Lawrence JR; Robarts RD; Caldwell DE
    Can J Microbiol; 1994 May; 40(5):331-40. PubMed ID: 8069778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.