These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 8142717)

  • 61. A sulfur tripod glycoconjugate that releases a high-affinity copper chelator in hepatocytes.
    Pujol AM; Cuillel M; Jullien AS; Lebrun C; Cassio D; Mintz E; Gateau C; Delangle P
    Angew Chem Int Ed Engl; 2012 Jul; 51(30):7445-8. PubMed ID: 22730309
    [No Abstract]   [Full Text] [Related]  

  • 62. Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-sufficient and -deficient barley roots.
    Huang C; Barker SJ; Langridge P; Smith FW; Graham RD
    Plant Physiol; 2000 Sep; 124(1):415-22. PubMed ID: 10982454
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Correction to: Foliar use of TiO
    Kumar P; Alamri SAM; Alrumman SA; Eid EM; Adelodun B; Goala M; Choi KS; Kumar V
    Environ Sci Pollut Res Int; 2022 Nov; 29(54):82618. PubMed ID: 36241839
    [No Abstract]   [Full Text] [Related]  

  • 64. Effect of chelating agents and solubility of cadmium complexes on uptake from soil by Brassica juncea.
    Van Engelen DL; Sharpe-Pedler RC; Moorhead KK
    Chemosphere; 2007 Jun; 68(3):401-8. PubMed ID: 17320931
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Lead uptake and translocation by willows in pot and field experiments.
    Zhivotovsky OP; Kuzovkina YA; Schulthess CP; Morris T; Pettinelli D
    Int J Phytoremediation; 2011 Sep; 13(8):731-49. PubMed ID: 21972515
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Optimizing phytoremediation of heavy metal-contaminated soil by exploiting plants' stress adaptation.
    Barocsi A; Csintalan Z; Kocsanyi L; Dushenkov S; Kuperberg JM; Kucharski R; Richter PI
    Int J Phytoremediation; 2003; 5(1):13-23. PubMed ID: 12710232
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of alkyl polyglucoside and nitrilotriacetic acid combined application on lead/pyrene bioavailability and dehydrogenase activity in co-contaminated soils.
    Chen T; Liu X; Zhang X; Chen X; Tao K; Hu X
    Chemosphere; 2016 Jul; 154():515-520. PubMed ID: 27085066
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Seed oil and fatty acid content in okra (Abelmoschus esculentus) and related species.
    Jarret RL; Wang ML; Levy IJ
    J Agric Food Chem; 2011 Apr; 59(8):4019-24. PubMed ID: 21413797
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Chelate-induced phytoextraction of copper contaminated upland red soil].
    Wu L; Luo Y; Huang H
    Ying Yong Sheng Tai Xue Bao; 2001 Jun; 12(3):435-8. PubMed ID: 11758431
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The effect of inhibitors on the radical formation in aqueous solutions of ascorbic acid.
    Kalus WH; Filby WG
    Int J Vitam Nutr Res; 1982; 52(1):44-9. PubMed ID: 6806204
    [TBL] [Abstract][Full Text] [Related]  

  • 71. First Report of Southern Blight of Okra (Abelmoschus esculentus) Caused by Sclerotium rolfsii in Côte d'Ivoire.
    Koné D; Mohamed D; Soro S; Bolou Bi BA; Kouadio YJ; Ji P
    Plant Dis; 2010 Nov; 94(11):1379. PubMed ID: 30743629
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Heavy metal load of soil, water and vegetables in peri-urban Delhi.
    Singh S; Kumar M
    Environ Monit Assess; 2006 Sep; 120(1-3):79-91. PubMed ID: 16897527
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Chelation in metal intoxication XVII: Antidotal efficacy of polyaminocarboxylic acids on acute chromate toxicity.
    Tandon SK; Srivastava L
    Arch Toxicol; 1985 Aug; 57(3):212-3. PubMed ID: 3933457
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Miracle molecules of our age: ethylenediaminetetraacetic acid.
    Rowbury R
    Sci Prog; 2011; 94(Pt 2):232-40. PubMed ID: 21805914
    [No Abstract]   [Full Text] [Related]  

  • 75. Nonenzymatic deiodination of thyroxine in vitro.
    Kobayashi I; Yamada T; Shichijo K
    Metabolism; 1966 Dec; 15(12):1140-8. PubMed ID: 4960097
    [No Abstract]   [Full Text] [Related]  

  • 76. Comparison of 3 chelating agents in treatment of experimental manganese poisoning.
    FRIED JF; LINDENBAUM A; SCHUBERT J
    Proc Soc Exp Biol Med; 1959 Mar; 100(3):570-3. PubMed ID: 13634211
    [No Abstract]   [Full Text] [Related]  

  • 77. Impairment of Respiration, Ion Accumulation, and Ion Retention in Root Tissue Treated with Ribonuclease and Ethylenediamine Tetraacetic Acid.
    Hanson JB
    Plant Physiol; 1960 May; 35(3):372-9. PubMed ID: 16655359
    [No Abstract]   [Full Text] [Related]  

  • 78. Reduction of manganese accumulation by ethylenediamine tetraacetic acid and nitrilo triacetic acid in okra (Abelmoschus esculentus L.) grown in sewage-irrigated soil.
    Denduluri S
    Bull Environ Contam Toxicol; 1994 Mar; 52(3):438-43. PubMed ID: 8142717
    [No Abstract]   [Full Text] [Related]  

  • 79. Reduction of lead accumulation by ethylenediamine tetraacetic acid and nitrilo triacetic acid in okra (Abelmoschus esculentus L.) grown in sewage-irrigated soil.
    Denduluri S
    Bull Environ Contam Toxicol; 1993 Jul; 51(1):40-5. PubMed ID: 8318772
    [No Abstract]   [Full Text] [Related]  

  • 80. Ameliorative effects of ethylenediamine tetraacetic acid and nitrilo triacetic acid on lead toxicity in okra (Abelmoschus esculentus L.) grown in sewage-irrigated soil.
    Denduluri S
    Bull Environ Contam Toxicol; 1994 Apr; 52(4):516-22. PubMed ID: 8167444
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.