These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 8143770)
1. Anchorage-independent culture of bovine granulosa cells: the effects of basic fibroblast growth factor and dibutyryl cAMP on cell division and differentiation. Lavranos TC; Rodgers HF; Bertoncello I; Rodgers RJ Exp Cell Res; 1994 Apr; 211(2):245-51. PubMed ID: 8143770 [TBL] [Abstract][Full Text] [Related]
2. The characteristics of an anchorage-independent clonal agar assay for primary explanted bovine granulosa cells. Bertoncello I; Bradley TR; Chamley WA; Hodgson GS J Cell Physiol; 1982 Nov; 113(2):224-30. PubMed ID: 6294121 [TBL] [Abstract][Full Text] [Related]
3. Production of extracellular matrix, fibronectin and steroidogenic enzymes, and growth of bovine granulosa cells in anchorage-independent culture. Rodgers RJ; Vella CA; Rodgers HF; Scott K; Lavranos TC Reprod Fertil Dev; 1996; 8(2):249-57. PubMed ID: 8726863 [TBL] [Abstract][Full Text] [Related]
4. Growth differentiation factor-9 has divergent effects on proliferation and steroidogenesis of bovine granulosa cells. Spicer LJ; Aad PY; Allen D; Mazerbourg S; Hsueh AJ J Endocrinol; 2006 May; 189(2):329-39. PubMed ID: 16648300 [TBL] [Abstract][Full Text] [Related]
5. Anchorage-independence as an index of proliferative potential and maturational age: a comparison of the growth of normal, primary explanted bovine granulosa cells in semisolid agar and in liquid culture. Bartholomeusz RK; Bertoncello I Int J Cell Cloning; 1987 Mar; 5(2):142-8. PubMed ID: 3494794 [TBL] [Abstract][Full Text] [Related]
6. Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants. McNatty KP; Juengel JL; Reader KL; Lun S; Myllymaa S; Lawrence SB; Western A; Meerasahib MF; Mottershead DG; Groome NP; Ritvos O; Laitinen MP Reproduction; 2005 Apr; 129(4):481-7. PubMed ID: 15798023 [TBL] [Abstract][Full Text] [Related]
7. A novel basal lamina matrix of the stratified epithelium of the ovarian follicle. Irving-Rodgers HF; Harland ML; Rodgers RJ Matrix Biol; 2004 Jul; 23(4):207-17. PubMed ID: 15296935 [TBL] [Abstract][Full Text] [Related]
9. Basal lamina and other extracellular matrix produced by bovine granulosa cells in anchorage-independent culture. Rodgers HF; Lavranos TC; Vella CA; Rodgers RJ Cell Tissue Res; 1995 Dec; 282(3):463-71. PubMed ID: 8581940 [TBL] [Abstract][Full Text] [Related]
10. The absence of p27Kip1, an inhibitor of G1 cyclin-dependent kinases, uncouples differentiation and growth arrest during the granulosa->luteal transition. Tong W; Kiyokawa H; Soos TJ; Park MS; Soares VC; Manova K; Pollard JW; Koff A Cell Growth Differ; 1998 Sep; 9(9):787-94. PubMed ID: 9751122 [TBL] [Abstract][Full Text] [Related]
11. Role of granulosa and theca cell interactions in ovarian follicular maturation. Tajima K; Orisaka M; Yata H; Goto K; Hosokawa K; Kotsuji F Microsc Res Tech; 2006 Jun; 69(6):450-8. PubMed ID: 16718667 [TBL] [Abstract][Full Text] [Related]
12. Involvement of G proteins in the effect of insulin-like growth factor I on gonadotropin-induced rat granulosa cell differentiation. He H; Herington AC; Roupas P Growth Regul; 1994 Mar; 4(1):20-8. PubMed ID: 8193581 [TBL] [Abstract][Full Text] [Related]
13. Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function. McNatty KP; Juengel JL; Reader KL; Lun S; Myllymaa S; Lawrence SB; Western A; Meerasahib MF; Mottershead DG; Groome NP; Ritvos O; Laitinen MP Reproduction; 2005 Apr; 129(4):473-80. PubMed ID: 15798022 [TBL] [Abstract][Full Text] [Related]
14. Evidence for the production of a growth-inhibitory factor by human granulosa-luteal cells. Dain LB; Bley MA; Barańao JL; Tesone M Mol Reprod Dev; 1993 Oct; 36(2):159-63. PubMed ID: 8257565 [TBL] [Abstract][Full Text] [Related]
15. The physiology of the ovary: maturation of ovarian granulosa cells and a novel role for antioxidants in the corpus luteum. Rodgers RJ; Lavranos TC; Rodgers HF; Young FM; Vella CA J Steroid Biochem Mol Biol; 1995 Jun; 53(1-6):241-6. PubMed ID: 7626462 [TBL] [Abstract][Full Text] [Related]
16. A correlation between ovarian follicular maturity and anchorage-independent growth of bovine granulosa cells. Bartholomeusz RK; Bertoncello I; Chamley WA Int J Cell Cloning; 1988 Mar; 6(2):106-15. PubMed ID: 3373032 [TBL] [Abstract][Full Text] [Related]
17. Enhanced proliferation and progesterone production by porcine granulosa cells cultured with pseudorabies virus growth factor (PRGF). Piekło R; Gregoraszczuk EL; Lesko J; Golais F; Stokłosowa S J Physiol Pharmacol; 1999 Mar; 50(1):129-37. PubMed ID: 10210161 [TBL] [Abstract][Full Text] [Related]
18. Effects of ovarian theca cells on granulosa cell differentiation during gonadotropin-independent follicular growth in cattle. Orisaka M; Mizutani T; Tajima K; Orisaka S; Shukunami K; Miyamoto K; Kotsuji F Mol Reprod Dev; 2006 Jun; 73(6):737-44. PubMed ID: 16541462 [TBL] [Abstract][Full Text] [Related]
19. Synergistic effects of growth hormone and insulin-like growth factor-I on differentiation and replication of cultured human luteinized granulosa cells. Ovesen P Acta Obstet Gynecol Scand; 1998 May; 77(5):487-91. PubMed ID: 9654167 [TBL] [Abstract][Full Text] [Related]
20. Growth promoting activity of oocytes on granulosa cells is decreased upon meiotic maturation. Lanuza GM; Fischman ML; Barañao JL Dev Biol; 1998 May; 197(1):129-39. PubMed ID: 9578624 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]