These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8144406)

  • 1. Competition between reductive acetogenesis and methanogenesis in the pig large-intestinal flora.
    De Graeve KG; Grivet JP; Durand M; Beaumatin P; Cordelet C; Hannequart G; Demeyer D
    J Appl Bacteriol; 1994 Jan; 76(1):55-61. PubMed ID: 8144406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR study of 13CO2 incorporation into short-chain fatty acids by pig large-intestinal flora.
    De Graeve KG; Grivet JP; Durand M; Beaumatin P; Demeyer D
    Can J Microbiol; 1990 Aug; 36(8):579-82. PubMed ID: 2123124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis.
    Le Van TD; Robinson JA; Ralph J; Greening RC; Smolenski WJ; Leedle JA; Schaefer DM
    Appl Environ Microbiol; 1998 Sep; 64(9):3429-36. PubMed ID: 9726893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of 2-bromoethanesulfonic acid and Peptostreptococcus productus ATCC 35244 addition on stimulation of reductive acetogenesis in the ruminal ecosystem by selective inhibition of methanogenesis.
    Nollet L; Demeyer D; Verstraete W
    Appl Environ Microbiol; 1997 Jan; 63(1):194-200. PubMed ID: 8979351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attempts to induce reductive acetogenesis into a sheep rumen.
    Immig I; Demeyer D; Fiedler D; Van Nevel C; Mbanzamihigo L
    Arch Tierernahr; 1996; 49(4):363-70. PubMed ID: 8988318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific inhibitors for identifying pathways for methane production from carbon monoxide by a nonadapted anaerobic mixed culture.
    Navarro SS; Cimpoia R; Bruant G; Guiot SR
    Can J Microbiol; 2014 Jun; 60(6):407-15. PubMed ID: 24896194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of anaerobes to methyl fluoride, 2-bromoethanesulfonate and hydrogen during acetate degradation.
    Hao L; Lü F; Li L; Shao L; He P
    J Environ Sci (China); 2013 May; 25(5):857-64. PubMed ID: 24218814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peat: home to novel syntrophic species that feed acetate- and hydrogen-scavenging methanogens.
    Schmidt O; Hink L; Horn MA; Drake HL
    ISME J; 2016 Aug; 10(8):1954-66. PubMed ID: 26771931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces.
    Lajoie SF; Bank S; Miller TL; Wolin MJ
    Appl Environ Microbiol; 1988 Nov; 54(11):2723-7. PubMed ID: 3145708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of Methanosarcina barkeri (Fusaro) under nonmethanogenic conditions by the fermentation of pyruvate to acetate: ATP synthesis via the mechanism of substrate level phosphorylation.
    Bock AK; Schönheit P
    J Bacteriol; 1995 Apr; 177(8):2002-7. PubMed ID: 7721692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative pathways for hydrogen disposal during fermentation in the human colon.
    Gibson GR; Cummings JH; Macfarlane GT; Allison C; Segal I; Vorster HH; Walker AR
    Gut; 1990 Jun; 31(6):679-83. PubMed ID: 2379871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attempted induction of reductive acetogenesis into the rumen fermentation in vitro.
    Demeyer DI; Fiedler D; De Graeve KG
    Reprod Nutr Dev; 1996; 36(3):233-40. PubMed ID: 8766728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic constraints on methanogenic crude oil biodegradation.
    Dolfing J; Larter SR; Head IM
    ISME J; 2008 Apr; 2(4):442-52. PubMed ID: 18079730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity of H2/CO2-utilizing acetogenic bacteria from feces of non-methane-producing humans.
    Bernalier A; Rochet V; Leclerc M; Doré J; Pochart P
    Curr Microbiol; 1996 Aug; 33(2):94-9. PubMed ID: 8662179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic trophic interactions of contrasting methane-emitting mire soils: processes versus taxa.
    Hunger S; Gößner AS; Drake HL
    FEMS Microbiol Ecol; 2015 May; 91(5):. PubMed ID: 25877342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying contribution of synthrophic acetate oxidation to methane production in thermophilic anaerobic reactors by membrane inlet mass spectrometry.
    Mulat DG; Ward AJ; Adamsen AP; Voigt NV; Nielsen JL; Feilberg A
    Environ Sci Technol; 2014 Feb; 48(4):2505-11. PubMed ID: 24437339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of a new acetogen isolated from an enrichment of the tammar wallaby forestomach.
    Gagen EJ; Wang J; Padmanabha J; Liu J; de Carvalho IP; Liu J; Webb RI; Al Jassim R; Morrison M; Denman SE; McSweeney CS
    BMC Microbiol; 2014 Dec; 14():314. PubMed ID: 25495654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Typical methanogenic inhibitors can considerably alter bacterial populations and affect the interaction between fatty acid degraders and homoacetogens.
    Xu K; Liu H; Li X; Chen J; Wang A
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2267-79. PubMed ID: 20559824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition Between Chemolithotrophic Acetogenesis and Hydrogenotrophic Methanogenesis for Exogenous H
    Fu B; Jin X; Conrad R; Liu H; Liu H
    Front Microbiol; 2019; 10():2418. PubMed ID: 31749772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Most probable number enumeration of H2-utilizing acetogenic bacteria from the digestive tract of animals and man.
    Doré J; Morvan B; Rieu-Lesme F; Goderel I; Gouet P; Pochart P
    FEMS Microbiol Lett; 1995 Jul; 130(1):7-12. PubMed ID: 7557299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.