These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 8144453)

  • 81. Mapping of the rib5 gene in Saccharomyces cerevisiae using UV light as an enhancer of rad52-mediated chromosome loss.
    Santos MA; Iturriaga EA; Eslava AP
    Curr Genet; 1988 Nov; 14(5):419-23. PubMed ID: 3066507
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Molecular characterization of chromosomal genes affecting double-stranded RNA replication in Saccharomyces cerevisiae.
    Icho T; Lee HS; Sommer SS; Wickner RB
    Basic Life Sci; 1986; 40():165-71. PubMed ID: 3551912
    [TBL] [Abstract][Full Text] [Related]  

  • 83. An ordered clone bank for chromosome I of Saccharomyces cerevisiae.
    Tanaka S; Yoshikawa A; Isono K
    J Bacteriol; 1992 Sep; 174(18):5985-7. PubMed ID: 1522073
    [TBL] [Abstract][Full Text] [Related]  

  • 84. UV-inducible transcripts in Saccharomyces cerevisiae.
    Rolfe M
    Curr Genet; 1985; 9(7):533-8. PubMed ID: 3916731
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity.
    Birrell GW; Giaever G; Chu AM; Davis RW; Brown JM
    Proc Natl Acad Sci U S A; 2001 Oct; 98(22):12608-13. PubMed ID: 11606770
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Further characterizations of bleomycin-sensitive (blm) mutants of Saccharomyces cerevisiae with implications for a radiomimetic model.
    Moore CW
    J Bacteriol; 1991 Jun; 173(11):3605-8. PubMed ID: 1710619
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Functions of Fun30 chromatin remodeler in regulating cellular resistance to genotoxic stress.
    Bi X; Yu Q; Siler J; Li C; Khan A
    PLoS One; 2015; 10(3):e0121341. PubMed ID: 25806814
    [TBL] [Abstract][Full Text] [Related]  

  • 88. FUN26 (function unknown now 26) protein from saccharomyces cerevisiae is a broad selectivity, high affinity, nucleoside and nucleobase transporter.
    Boswell-Casteel RC; Johnson JM; Duggan KD; Roe-Žurž Z; Schmitz H; Burleson C; Hays FA
    J Biol Chem; 2014 Aug; 289(35):24440-51. PubMed ID: 25035431
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The ATP-dependent chromatin remodeling enzyme Fun30 represses transcription by sliding promoter-proximal nucleosomes.
    Byeon B; Wang W; Barski A; Ranallo RT; Bao K; Schones DE; Zhao K; Wu C; Wu WH
    J Biol Chem; 2013 Aug; 288(32):23182-93. PubMed ID: 23779104
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The modest beginnings of one genome project.
    Kaback DB
    Genetics; 2013 Jun; 194(2):291-9. PubMed ID: 23733847
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The Snf2 homolog Fun30 acts as a homodimeric ATP-dependent chromatin-remodeling enzyme.
    Awad S; Ryan D; Prochasson P; Owen-Hughes T; Hassan AH
    J Biol Chem; 2010 Mar; 285(13):9477-9484. PubMed ID: 20075079
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The SNF2-family member Fun30 promotes gene silencing in heterochromatic loci.
    Neves-Costa A; Will WR; Vetter AT; Miller JR; Varga-Weisz P
    PLoS One; 2009 Dec; 4(12):e8111. PubMed ID: 19956593
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs.
    Flaus A; Martin DM; Barton GJ; Owen-Hughes T
    Nucleic Acids Res; 2006; 34(10):2887-905. PubMed ID: 16738128
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Telomeric silencing of an open reading frame in Saccharomyces cerevisiae.
    Barton AB; Kaback DB
    Genetics; 2006 Jun; 173(2):1169-73. PubMed ID: 16582424
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Delineating the requirements for spontaneous DNA damage resistance pathways in genome maintenance and viability in Saccharomyces cerevisiae.
    Morey NJ; Doetsch PW; Jinks-Robertson S
    Genetics; 2003 Jun; 164(2):443-55. PubMed ID: 12807766
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Genetic analysis of transcription-associated mutation in Saccharomyces cerevisiae.
    Morey NJ; Greene CN; Jinks-Robertson S
    Genetics; 2000 Jan; 154(1):109-20. PubMed ID: 10628973
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Chromosome size-dependent control of meiotic reciprocal recombination in Saccharomyces cerevisiae: the role of crossover interference.
    Kaback DB; Barber D; Mahon J; Lamb J; You J
    Genetics; 1999 Aug; 152(4):1475-86. PubMed ID: 10430577
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast.
    Alseth I; Eide L; Pirovano M; Rognes T; Seeberg E; Bjørås M
    Mol Cell Biol; 1999 May; 19(5):3779-87. PubMed ID: 10207101
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae.
    Swanson RL; Morey NJ; Doetsch PW; Jinks-Robertson S
    Mol Cell Biol; 1999 Apr; 19(4):2929-35. PubMed ID: 10082560
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Patterns of meiotic double-strand breakage on native and artificial yeast chromosomes.
    Klein S; Zenvirth D; Dror V; Barton AB; Kaback DB; Simchen G
    Chromosoma; 1996 Dec; 105(5):276-84. PubMed ID: 8939820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.