These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 8144465)

  • 21. Mutation in yaaT leads to significant inhibition of phosphorelay during sporulation in Bacillus subtilis.
    Hosoya S; Asai K; Ogasawara N; Takeuchi M; Sato T
    J Bacteriol; 2002 Oct; 184(20):5545-53. PubMed ID: 12270811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB).
    Quisel JD; Grossman AD
    J Bacteriol; 2000 Jun; 182(12):3446-51. PubMed ID: 10852876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of expression of genes coding for small, acid-soluble proteins of Bacillus subtilis spores: studies using lacZ gene fusions.
    Mason JM; Hackett RH; Setlow P
    J Bacteriol; 1988 Jan; 170(1):239-44. PubMed ID: 3121585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new mutation in spo0A with intragenic suppressors in the effector domain.
    Schmeisser F; Brannigan JA; Lewis RJ; Wilkinson AJ; Youngman P; Barák I
    FEMS Microbiol Lett; 2000 Apr; 185(2):123-8. PubMed ID: 10754235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of cotJ, a sigma E-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores.
    Henriques AO; Beall BW; Roland K; Moran CP
    J Bacteriol; 1995 Jun; 177(12):3394-406. PubMed ID: 7768848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of a lacZ fusion to study the role of the spoO genes of Bacillus subtilis in developmental regulation.
    Zuber P; Losick R
    Cell; 1983 Nov; 35(1):275-83. PubMed ID: 6414720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis by fluorescence microscopy of the development of compartment-specific gene expression during sporulation of Bacillus subtilis.
    Bylund JE; Zhang L; Haines MA; Higgins ML; Piggot PJ
    J Bacteriol; 1994 May; 176(10):2898-905. PubMed ID: 8188591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacillus subtilis Histidine Kinase KinC Activates Biofilm Formation by Controlling Heterogeneity of Single-Cell Responses.
    Chen Z; Srivastava P; Zarazúa-Osorio B; Marathe A; Fujita M; Igoshin OA
    mBio; 2022 Feb; 13(1):e0169421. PubMed ID: 35012345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The citrulline biosynthetic operon, argC-F, and a ribose transport operon, rbs, from Bacillus subtilis are negatively regulated by Spo0A.
    O'Reilly M; Woodson K; Dowds BC; Devine KM
    Mol Microbiol; 1994 Jan; 11(1):87-98. PubMed ID: 7511775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis.
    LeDeaux JR; Grossman AD
    J Bacteriol; 1995 Jan; 177(1):166-75. PubMed ID: 8002614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA-related conditions controlling the initiation of sporulation in Bacillus subtilis.
    Ireton K; Grossman AD
    Cell Mol Biol Res; 1994; 40(3):193-8. PubMed ID: 7874195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of spo0 mutations on the expression of spo0A- and spo0F-lacZ fusions.
    Yamashita S; Yoshikawa H; Kawamura F; Takahashi H; Yamamoto T; Kobayashi Y; Saito H
    Mol Gen Genet; 1986 Oct; 205(1):28-33. PubMed ID: 3099127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Artificial activation of both σ
    Karaki T; Sunaga A; Takahashi Y; Asai K
    J Gen Appl Microbiol; 2024 Feb; 69(4):215-228. PubMed ID: 37380492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. kinC/D-mediated heterogeneous expression of spo0A during logarithmical growth in Bacillus subtilis is responsible for partial suppression of phi 29 development.
    Castilla-Llorente V; Salas M; Meijer WJ
    Mol Microbiol; 2008 Jun; 68(6):1406-17. PubMed ID: 18410285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Signal transduction in Bacillus subtilis sporulation.
    Strauch MA; Hoch JA
    Curr Opin Genet Dev; 1993 Apr; 3(2):203-12. PubMed ID: 8504245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hpr (ScoC) and the phosphorelay couple cell cycle and sporulation in Bacillus subtilis.
    Shafikhani SH; Núñez E; Leighton T
    FEMS Microbiol Lett; 2004 Feb; 231(1):99-110. PubMed ID: 14769473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integration of σB activity into the decision-making process of sporulation initiation in Bacillus subtilis.
    Reder A; Gerth U; Hecker M
    J Bacteriol; 2012 Mar; 194(5):1065-74. PubMed ID: 22210769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Just-in-time control of Spo0A synthesis in Bacillus subtilis by multiple regulatory mechanisms.
    Chastanet A; Losick R
    J Bacteriol; 2011 Nov; 193(22):6366-74. PubMed ID: 21949067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel modulators controlling entry into sporulation in Bacillus subtilis.
    Garti-Levi S; Eswara A; Smith Y; Fujita M; Ben-Yehuda S
    J Bacteriol; 2013 Apr; 195(7):1475-83. PubMed ID: 23335417
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A developmental checkpoint couples the initiation of sporulation to DNA replication in Bacillus subtilis.
    Ireton K; Grossman AD
    EMBO J; 1994 Apr; 13(7):1566-73. PubMed ID: 8156995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.