These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8144671)

  • 1. Evidence that an approximately 50-kDa mammalian plasma membrane protein with receptor-like properties mediates the amphiphilicity of specifically bound Clostridium perfringens enterotoxin.
    Wieckowski EU; Wnek AP; McClane BA
    J Biol Chem; 1994 Apr; 269(14):10838-48. PubMed ID: 8144671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of membrane-associated Clostridium perfringens enterotoxin following pronase treatment.
    Wieckowski EU; Kokai-Kun JF; McClane BA
    Infect Immun; 1998 Dec; 66(12):5897-905. PubMed ID: 9826371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CaCo-2 cells treated with Clostridium perfringens enterotoxin form multiple large complex species, one of which contains the tight junction protein occludin.
    Singh U; Van Itallie CM; Mitic LL; Anderson JM; McClane BA
    J Biol Chem; 2000 Jun; 275(24):18407-17. PubMed ID: 10749869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compositional and stoichiometric analysis of Clostridium perfringens enterotoxin complexes in Caco-2 cells and claudin 4 fibroblast transfectants.
    Robertson SL; Smedley JG; Singh U; Chakrabarti G; Van Itallie CM; Anderson JM; McClane BA
    Cell Microbiol; 2007 Nov; 9(11):2734-55. PubMed ID: 17587331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a prepore large-complex stage in the mechanism of action of Clostridium perfringens enterotoxin.
    Smedley JG; Uzal FA; McClane BA
    Infect Immun; 2007 May; 75(5):2381-90. PubMed ID: 17307943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a 50,000 Mr protein from rabbit brush border membranes that binds Clostridium perfringens enterotoxin.
    Wnek AP; McClane BA
    Biochem Biophys Res Commun; 1983 May; 112(3):1099-105. PubMed ID: 6303335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary evidence that Clostridium perfringens type A enterotoxin is present in a 160,000-Mr complex in mammalian membranes.
    Wnek AP; McClane BA
    Infect Immun; 1989 Feb; 57(2):574-81. PubMed ID: 2536357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of Clostridium perfringens enterotoxin action at different temperatures demonstrate a correlation between complex formation and cytotoxicity.
    McClane BA; Wnek AP
    Infect Immun; 1990 Sep; 58(9):3109-15. PubMed ID: 2117579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clostridium perfringens enterotoxin acts by producing small molecule permeability alterations in plasma membranes.
    McClane BA
    Toxicology; 1994 Feb; 87(1-3):43-67. PubMed ID: 8160188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a Clostridium perfringens enterotoxin region required for large complex formation and cytotoxicity by random mutagenesis.
    Kokai-Kun JF; Benton K; Wieckowski EU; McClane BA
    Infect Immun; 1999 Nov; 67(11):5634-41. PubMed ID: 10531210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A recombinant C-terminal toxin fragment provides evidence that membrane insertion is important for Clostridium perfringens enterotoxin cytotoxicity.
    Hanna PC; McClane BA
    Mol Microbiol; 1991 Jan; 5(1):225-30. PubMed ID: 2014001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that a region(s) of the Clostridium perfringens enterotoxin molecule remains exposed on the external surface of the mammalian plasma membrane when the toxin is sequestered in small or large complexes.
    Kokai-Kun JF; McClane BA
    Infect Immun; 1996 Mar; 64(3):1020-5. PubMed ID: 8641752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complex interactions between Clostridium perfringens enterotoxin and epithelial tight junctions.
    McClane BA
    Toxicon; 2001 Nov; 39(11):1781-91. PubMed ID: 11595640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a claudin-4 residue important for mediating the host cell binding and action of Clostridium perfringens enterotoxin.
    Robertson SL; Smedley JG; McClane BA
    Infect Immun; 2010 Jan; 78(1):505-17. PubMed ID: 19884339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clostridium perfringens enterotoxin utilizes two structurally related membrane proteins as functional receptors in vivo.
    Katahira J; Sugiyama H; Inoue N; Horiguchi Y; Matsuda M; Sugimoto N
    J Biol Chem; 1997 Oct; 272(42):26652-8. PubMed ID: 9334247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An overview of Clostridium perfringens enterotoxin.
    McClane BA
    Toxicon; 1996; 34(11-12):1335-43. PubMed ID: 9027990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein.
    Fujita K; Katahira J; Horiguchi Y; Sonoda N; Furuse M; Tsukita S
    FEBS Lett; 2000 Jul; 476(3):258-61. PubMed ID: 10913624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divalent cation involvement in the action of Clostridium perfringens type A enterotoxin. Early events in enterotoxin action are divalent cation-independent.
    McClane BA; Wnek AP; Hulkower KI; Hanna PC
    J Biol Chem; 1988 Feb; 263(5):2423-35. PubMed ID: 3123494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RIP1, RIP3, and MLKL Contribute to Cell Death Caused by Clostridium perfringens Enterotoxin.
    Shrestha A; Mehdizadeh Gohari I; McClane BA
    mBio; 2019 Dec; 10(6):. PubMed ID: 31848291
    [No Abstract]   [Full Text] [Related]  

  • 20. Bystander Host Cell Killing Effects of Clostridium perfringens Enterotoxin.
    Shrestha A; Hendricks MR; Bomberger JM; McClane BA
    mBio; 2016 Dec; 7(6):. PubMed ID: 27965452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.