BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 8144673)

  • 1. An altered specificity mutation in the lambda repressor induces global reorganization of the protein-DNA interface.
    Benevides JM; Weiss MA; Thomas GJ
    J Biol Chem; 1994 Apr; 269(14):10869-78. PubMed ID: 8144673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary structure and interaction of phage D108 Ner repressor with a 61-base-pair operator: evidence for altered protein and DNA structures in the complex.
    Benevides JM; Kukolj G; Autexier C; Aubrey KL; DuBow MS; Thomas GJ
    Biochemistry; 1994 Sep; 33(35):10701-10. PubMed ID: 8075070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA recognition by the helix-turn-helix motif: investigation by laser Raman spectroscopy of the phage lambda repressor and its interaction with operator sites OL1 and OR3.
    Benevides JM; Weiss MA; Thomas GJ
    Biochemistry; 1991 Jun; 30(24):5955-63. PubMed ID: 1828373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of the helix-turn-helix motif: nonlocal effects of quaternary structure in DNA recognition investigated by laser Raman spectroscopy.
    Benevides JM; Weiss MA; Thomas GJ
    Biochemistry; 1991 May; 30(18):4381-8. PubMed ID: 2021630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deuterium exchange of operator 8CH groups as a Raman probe of repressor recognition: interactions of wild-type and mutant lambda repressors with operator OL1.
    Reilly KE; Becka R; Thomas GJ
    Biochemistry; 1992 Mar; 31(12):3118-25. PubMed ID: 1532510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined conformational search and finite-difference Poisson-Boltzmann approach for flexible docking. Application to an operator mutation in the lambda repressor-operator complex.
    Zacharias M; Luty BA; Davis ME; McCammon JA
    J Mol Biol; 1994 May; 238(3):455-65. PubMed ID: 8176736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contacts between Tet repressor and tet operator revealed by new recognition specificities of single amino acid replacement mutants.
    Baumeister R; Helbl V; Hillen W
    J Mol Biol; 1992 Aug; 226(4):1257-70. PubMed ID: 1518055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutant lambda repressors with increased operator affinities reveal new, specific protein-DNA contacts.
    Benson N; Adams C; Youderian P
    Genetics; 1992 Jan; 130(1):17-26. PubMed ID: 1531047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arc repressor-operator DNA interactions and contribution of Phe10 to binding specificity.
    Dostál L; Misselwitz R; Welfle H
    Biochemistry; 2005 Jun; 44(23):8387-96. PubMed ID: 15938628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-directed DNA structure II. Raman spectroscopy of a leucine zipper bZIP complex.
    Benevides JM; Li T; Lu XJ; Srinivasan AR; Olson WK; Weiss MA; Thomas GJ
    Biochemistry; 2000 Jan; 39(3):548-56. PubMed ID: 10642179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carboxyl-terminal domain dimer interface mutant 434 repressors have altered dimerization and DNA binding specificities.
    Donner AL; Paa K; Koudelka GB
    J Mol Biol; 1998 Nov; 283(5):931-46. PubMed ID: 9799634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Cro and lambda-repressor distinguish between operators: the structural basis underlying a genetic switch.
    Albright RA; Matthews BW
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3431-6. PubMed ID: 9520383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An aromatic stacking interaction between subunits helps mediate DNA sequence specificity: operator site discrimination by phage lambda cI repressor.
    Huang YT; Rusinova E; Ross JB; Senear DF
    J Mol Biol; 1997 Mar; 267(2):403-17. PubMed ID: 9096234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential recognition of OR1 and OR3 by bacteriophage 434 repressor and Cro.
    Koudelka GB; Lam CY
    J Biol Chem; 1993 Nov; 268(32):23812-7. PubMed ID: 8226917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA sequence dependent and independent conformational changes in multipartite operator recognition by lambda-repressor.
    Deb S; Bandyopadhyay S; Roy S
    Biochemistry; 2000 Mar; 39(12):3377-83. PubMed ID: 10727231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the structures of operator DNA free and in complex with lambda repressor.
    Baleja JD; Sykes BD
    Biochem Cell Biol; 1991; 69(2-3):202-5. PubMed ID: 2031722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer-aided discrimination between active and inactive mutants of the N-terminal domain of the bacteriophage lambda repressor.
    Kombo DC; Némethy G; Gibson KD; Rackovsky S; Scheraga HA
    J Mol Biol; 1996 Mar; 256(3):517-32. PubMed ID: 8604135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved residues make similar contacts in two repressor-operator complexes.
    Pabo CO; Aggarwal AK; Jordan SR; Beamer LJ; Obeysekare UR; Harrison SC
    Science; 1990 Mar; 247(4947):1210-3. PubMed ID: 2315694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lambda repressor recognizes the approximately 2-fold symmetric half-operator sequences asymmetrically.
    Sarai A; Takeda Y
    Proc Natl Acad Sci U S A; 1989 Sep; 86(17):6513-7. PubMed ID: 2771938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the complex of lac repressor headpiece and an 11 base-pair half-operator determined by nuclear magnetic resonance spectroscopy and restrained molecular dynamics.
    Chuprina VP; Rullmann JA; Lamerichs RM; van Boom JH; Boelens R; Kaptein R
    J Mol Biol; 1993 Nov; 234(2):446-62. PubMed ID: 8230225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.