These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8145)

  • 101. Purification and properties of a thermophilic bacteriophage lytic enzyme.
    Welker NE
    J Virol; 1967 Jun; 1(3):617-25. PubMed ID: 4990043
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Use of beta-maltosides (p-nitrophenyl-beta-D-maltoside, 2-chloro-4- nitrophenyl-beta-D-maltoside and 4-methylumbelliferyl-beta-D-maltoside) as substrates for the assay of neutral alpha-glucosidase from human kidney and urine.
    Lukomskaya IS; Voznyi YV; Lanskaya IM; Podkidisheva EI
    Clin Chim Acta; 1996 Jan; 244(2):145-54. PubMed ID: 8714432
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Purification and some properties of riboflavin synthetase from Bacillus stearothermophilus ATCC 8005.
    Suzuki Y; Terai Y; Abe S
    Appl Environ Microbiol; 1978 Feb; 35(2):258-63. PubMed ID: 25043
    [TBL] [Abstract][Full Text] [Related]  

  • 104. [Catalytic properties of a neutral alpha-glucosidase from human kidney].
    de Burlet G; Sudaka P
    Biochimie; 1977; 59(1):7-14. PubMed ID: 15632
    [TBL] [Abstract][Full Text] [Related]  

  • 105. A bacterial glucoamylase degrading cyclodextrins. Partial purification and properties of the enzyme from a Flavobacterium species.
    Bender H
    Eur J Biochem; 1981 Apr; 115(2):287-91. PubMed ID: 7238507
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Production of an extracellular maltase by thermophilic Bacillus sp. KP 1035.
    Suzuki Y; Tsuji T; Abe S
    Appl Environ Microbiol; 1976 Dec; 32(6):747-52. PubMed ID: 12718
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Purification and Characterization of an Aspecific Glycoside Hydrolase from the Anaerobic Ruminal Fungus Neocallimastix frontalis.
    Hebraud M; Fevre M
    Appl Environ Microbiol; 1990 Oct; 56(10):3164-9. PubMed ID: 16348324
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Maltose metabolism of Pseudomonas fluorescens.
    Guffanti AA; Corpe WA
    J Bacteriol; 1975 Oct; 124(1):262-8. PubMed ID: 240805
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Abnormally high tolerance against proteolysis of an exo-oligo-1,6-glucosidase from a thermophile Bacillus thermoglucosidius KP 1006, compared with its mesophilic counterpart from Bacillus cereus ATCC 7064.
    Suzuki Y; Imai T
    Biochim Biophys Acta; 1982 Jul; 705(1):124-6. PubMed ID: 6810935
    [No Abstract]   [Full Text] [Related]  

  • 110. Studies of the dextranase activity of pig-spleen acid alpha-D-glucosidase.
    Preobrazhenskaya ME; Minakova AL; Rosenfeld EL
    Carbohydr Res; 1974 Dec; 38():267-77. PubMed ID: 4447942
    [No Abstract]   [Full Text] [Related]  

  • 111. Sucrose, sodium dodecyl sulfate, urea, and 2-mercaptoethanol affect the thermal inactivation of R-phycoerythrin.
    Orta-Ramirez A; Merrill JE; Smith DM
    J Food Prot; 2001 Nov; 64(11):1806-11. PubMed ID: 11726163
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Irreversible thermal inactivation and conformational lock of alpha glucosidase.
    Alaei L; Izadi Z; Jafari S; Jahanshahi F; Jaymand M; Mohammadi P; Paray BA; Hasan A; Falahati M; Varnamkhasti BS; Saboury AA; Moosavi-Nejad Z; Sheikh-Hosseini M; Derakhshankhah H
    J Biomol Struct Dyn; 2021 Jun; 39(9):3256-3262. PubMed ID: 32345145
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Isolation and characterization of β-glucosidases from Aspergillus nidulans mutant USDB 1183.
    Hoh YK; Yeoh HH; Tan TK
    World J Microbiol Biotechnol; 1993 Sep; 9(5):555-8. PubMed ID: 24420198
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Broad substrate specificity of a hyperthermophilic α-glucosidase from
    Jung JH; Seo DH; Holden JF; Kim HS; Baik MY; Park CS
    Food Sci Biotechnol; 2016; 25(6):1665-1669. PubMed ID: 30263460
    [No Abstract]   [Full Text] [Related]  

  • 115. Purification and properties ofβ-fructofuranosidase from Aspergillus japonicus.
    Hayashi S; Matsuzaki K; Takasaki Y; Ueno H; Imada K
    World J Microbiol Biotechnol; 1992 May; 8(3):276-9. PubMed ID: 24425477
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Selective and high-yield production of ethyl α-d-glucopyranoside by the α-glucosyl transfer enzyme of Xanthomonas campestris WU-9701 and glucose isomerase.
    Kirimura K; Cao W; Onda Y; Yoshioka I; Ishii Y
    J Biosci Bioeng; 2022 Sep; 134(3):220-225. PubMed ID: 35864059
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Thermal properties of enzymes from Bacillus flavothermus, grown between 34 and 70 degrees C.
    Lauwers AM; Heinen W
    Antonie Van Leeuwenhoek; 1983 Jun; 49(2):191-201. PubMed ID: 6311096
    [TBL] [Abstract][Full Text] [Related]  

  • 118. -Glucosidase activity on the outside of the labella and legs of the fly.
    Koizumi O; Kijima H; Kawabata K; Morita H
    Comp Biochem Physiol B; 1973 Feb; 44(2):347-56. PubMed ID: 4709578
    [No Abstract]   [Full Text] [Related]  

  • 119. Isolation of an enzyme from soil that degrades the organophosphorus insecticide, crotoxyphos.
    Getzin LW; Satyanarayana T
    Arch Environ Contam Toxicol; 1979; 8(6):661-72. PubMed ID: 43710
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Kinetic analysis of the active site of an intracellular beta-glucosidase fromCellulomonas biazotea.
    Siddiqui KS; Rashid MH; Rajoka MI
    Folia Microbiol (Praha); 1997 Feb; 42(1):53-8. PubMed ID: 18454327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.