These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 8145028)

  • 1. Bifurcation analysis pf periodic SEIR and SIR epidemic models.
    Kuznetsov YA; Piccardi C
    J Math Biol; 1994; 32(2):109-21. PubMed ID: 8145028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infinite subharmonic bifurcation in an SEIR epidemic model.
    Schwartz IB; Smith HL
    J Math Biol; 1983; 18(3):233-53. PubMed ID: 6663207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new SEIR epidemic model with applications to the theory of eradication and control of diseases, and to the calculation of R0.
    Huang SZ
    Math Biosci; 2008 Sep; 215(1):84-104. PubMed ID: 18621064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonally varying epidemics with and without latent period: a comparative simulation study.
    Moneim IA
    Math Med Biol; 2007 Mar; 24(1):1-15. PubMed ID: 17317756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonality and period-doubling bifurcations in an epidemic model.
    Aron JL; Schwartz IB
    J Theor Biol; 1984 Oct; 110(4):665-79. PubMed ID: 6521486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple endemic states in age-structured SIR epidemic models.
    Franceschetti A; Pugliese A; Breda D
    Math Biosci Eng; 2012 Jul; 9(3):577-99. PubMed ID: 22881027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parametric dependence in model epidemics. II: Non-contact rate-related parameters.
    Schaffer WM; Bronnikova TV
    J Biol Dyn; 2007 Jul; 1(3):231-48. PubMed ID: 22876793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifurcation analysis for a delayed SEIR epidemic model with saturated incidence and saturated treatment function.
    Liu J
    J Biol Dyn; 2019 Dec; 13(1):461-480. PubMed ID: 31238795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hopf bifurcations in multiple-parameter space of the Hodgkin-Huxley equations I. Global organization of bistable periodic solutions.
    Fukai H; Doi S; Nomura T; Sato S
    Biol Cybern; 2000 Mar; 82(3):215-22. PubMed ID: 10664108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epidemiological effects of seasonal oscillations in birth rates.
    He D; Earn DJ
    Theor Popul Biol; 2007 Sep; 72(2):274-91. PubMed ID: 17588629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An SIS epidemic model with variable population size and a delay.
    Hethcote HW; van den Driessche P
    J Math Biol; 1995; 34(2):177-94. PubMed ID: 8576654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hopf bifurcations in multiple-parameter space of the hodgkin-huxley equations II. Singularity theoretic approach and highly degenerate bifurcations.
    Fukai H; Nomura T; Doi S; Sato S
    Biol Cybern; 2000 Mar; 82(3):223-9. PubMed ID: 10664109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis and control of an SEIR epidemic system with nonlinear transmission rate.
    Yi N; Zhang Q; Mao K; Yang D; Li Q
    Math Comput Model; 2009 Nov; 50(9):1498-1513. PubMed ID: 32288203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Threshold dynamics of a periodic SIR model with delay in an infected compartment.
    Bai Z
    Math Biosci Eng; 2015 Jun; 12(3):555-64. PubMed ID: 25811548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Media impact research: a discrete SIR epidemic model with threshold switching and nonlinear infection forces.
    Qin W; Zhang J; Dong Z
    Math Biosci Eng; 2023 Sep; 20(10):17783-17802. PubMed ID: 38052536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melnikov analysis of chaos in a simple epidemiological model.
    Glendinning P; Perry LP
    J Math Biol; 1997 Feb; 35(3):359-73. PubMed ID: 9120378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small amplitude, long period outbreaks in seasonally driven epidemics.
    Schwartz IB
    J Math Biol; 1992; 30(5):473-91. PubMed ID: 1578191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages.
    Korobeinikov A
    Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periodic solutions: a robust numerical method for an S-I-R model of epidemics.
    Milner FA; Pugliese A
    J Math Biol; 1999 Dec; 39(6):471-92. PubMed ID: 10672508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of using different types of periodic contact rate on the behaviour of infectious diseases: a simulation study.
    Moneim IA
    Comput Biol Med; 2007 Nov; 37(11):1582-90. PubMed ID: 17452036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.