BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 8145149)

  • 1. Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones.
    Chard PS; Bleakman D; Christakos S; Fullmer CS; Miller RJ
    J Physiol; 1993 Dec; 472():341-57. PubMed ID: 8145149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of parvalbumin and calbindin D28k-immunoreactive neurons in dorsal root ganglia of rat in relation to their cytochrome oxidase and carbonic anhydrase content.
    Carr PA; Yamamoto T; Karmy G; Baimbridge KG; Nagy JI
    Neuroscience; 1989; 33(2):363-71. PubMed ID: 2560150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of plasma membrane Ca2+ pump by calbindin-D28k and calmodulin is additive in EGTA-free solutions.
    Timmermans JA; Bindels RJ; Van Os CH
    J Nutr; 1995 Jul; 125(7 Suppl):1981S-1986S. PubMed ID: 7602380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parvalbumin is highly colocalized with calbindin D28k and rarely with calcitonin gene-related peptide in dorsal root ganglia neurons of rat.
    Carr PA; Yamamoto T; Karmy G; Baimbridge KG; Nagy JI
    Brain Res; 1989 Sep; 497(1):163-70. PubMed ID: 2790451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential distribution of calbindin-D28k and parvalbumin in somatic and visceral sensory neurons.
    Honda CN
    Neuroscience; 1995 Oct; 68(3):883-92. PubMed ID: 8577381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calbindin-D28K (CaBP) levels and calcium currents in acutely dissociated epileptic neurons.
    Köhr G; Lambert CE; Mody I
    Exp Brain Res; 1991; 85(3):543-51. PubMed ID: 1655508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous Ca2+ buffer concentration and Ca2+ microdomains in hippocampal neurons.
    Müller A; Kukley M; Stausberg P; Beck H; Müller W; Dietrich D
    J Neurosci; 2005 Jan; 25(3):558-65. PubMed ID: 15659591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calbindin-D28k: role in determining intrinsically generated firing patterns in rat supraoptic neurones.
    Li Z; Decavel C; Hatton GI
    J Physiol; 1995 Nov; 488 ( Pt 3)(Pt 3):601-8. PubMed ID: 8576851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous intracellular calcium buffering and the activation/inactivation of HVA calcium currents in rat dentate gyrus granule cells.
    Köhr G; Mody I
    J Gen Physiol; 1991 Nov; 98(5):941-67. PubMed ID: 1662686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunocytochemical localization of calbindin-D28k, calbindin-D9k and parvalbumin in rat kidney.
    Bindels RJ; Hartog A; Timmermans JA; van Os CH
    Contrib Nephrol; 1991; 91():7-13. PubMed ID: 1800013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of the calcium-binding proteins parvalbumin and calbindin-D28k in the sensorimotor cortex of the rat.
    van Brederode JF; Helliesen MK; Hendrickson AE
    Neuroscience; 1991; 44(1):157-71. PubMed ID: 1770994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of IP(3)-mediated Ca2+ puffs in Xenopus laevis oocytes by the Ca2+-binding protein parvalbumin.
    John LM; Mosquera-Caro M; Camacho P; Lechleiter JD
    J Physiol; 2001 Aug; 535(Pt 1):3-16. PubMed ID: 11507154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular calcium ion response to glucose in beta-cells of calbindin-D28k nullmutant mice and in betaHC13 cells overexpressing calbindin-D28k.
    Parkash J; Chaudhry MA; Amer AS; Christakos S; Rhoten WB
    Endocrine; 2002 Aug; 18(3):221-9. PubMed ID: 12450313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calretinin, calbindin-D28k and parvalbumin-like immunoreactivity in mouse chemoreceptor neurons.
    Kishimoto J; Keverne EB; Emson PC
    Brain Res; 1993 May; 610(2):325-9. PubMed ID: 8319093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endogenous and exogenous Ca2+ buffers differentially modulate Ca2+-dependent inactivation of Ca(v)2.1 Ca2+ channels.
    Kreiner L; Lee A
    J Biol Chem; 2006 Feb; 281(8):4691-8. PubMed ID: 16373336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of chronic monocular enucleation on calcium binding proteins calbindin-D28k and parvalbumin in the lateral geniculate nucleus of adult rhesus monkeys.
    Gutierrez C; Cusick CG
    Brain Res; 1994 Jul; 651(1-2):300-10. PubMed ID: 7922579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat.
    Alcántara S; Ferrer I; Soriano E
    Anat Embryol (Berl); 1993 Jul; 188(1):63-73. PubMed ID: 8214625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calbindin-D28k fails to protect hippocampal neurons against ischemia in spite of its cytoplasmic calcium buffering properties: evidence from calbindin-D28k knockout mice.
    Klapstein GJ; Vietla S; Lieberman DN; Gray PA; Airaksinen MS; Thoenen H; Meyer M; Mody I
    Neuroscience; 1998 Jul; 85(2):361-73. PubMed ID: 9622236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calbindin-D28k decreases L-type calcium channel activity and modulates intracellular calcium homeostasis in response to K+ depolarization in a rat beta cell line RINr1046-38.
    Lee D; Obukhov AG; Shen Q; Liu Y; Dhawan P; Nowycky MC; Christakos S
    Cell Calcium; 2006 Jun; 39(6):475-485. PubMed ID: 16530828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of calbindin D28k, calretinin and parvalbumin in the cerebellum of pups of ethanol-treated female rats.
    Wierzba-Bobrowicz T; Lewandowska E; Stępień T; Szpak GM
    Folia Neuropathol; 2011; 49(1):47-55. PubMed ID: 21455843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.