These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 8145186)

  • 21. Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish.
    Bell CC; Libouban S; Szabo T
    J Comp Neurol; 1983 May; 216(3):327-38. PubMed ID: 6306068
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of motor command feedback in electrosensory processing.
    Meek J; Grant K
    Eur J Morphol; 1994 Aug; 32(2-4):225-34. PubMed ID: 7803171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mauthner cell-initiated electromotor behavior is mediated via NMDA and metabotropic glutamatergic receptors on medullary pacemaker neurons in a gymnotid fish.
    Curti S; Falconi A; Morales FR; Borde M
    J Neurosci; 1999 Oct; 19(20):9133-40. PubMed ID: 10516331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Encoding and processing biologically relevant temporal information in electrosensory systems.
    Fortune ES; Rose GJ; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jun; 192(6):625-35. PubMed ID: 16450118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuronal sensitivity to microsecond time disparities in the electrosensory system of Gymnarchus niloticus.
    Matsushita A; Kawasaki M
    J Neurosci; 2005 Dec; 25(49):11424-32. PubMed ID: 16339036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electric signaling behavior and the mechanisms of electric organ discharge production in mormyrid fish.
    Carlson BA
    J Physiol Paris; 2002; 96(5-6):405-19. PubMed ID: 14692489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrosensory maps form a substrate for the distributed and parallel control of behavioral responses in weakly electric fish.
    Heiligenberg W
    Brain Behav Evol; 1988; 31(1):6-16. PubMed ID: 3334906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasticity in an electrosensory system. I. General features of a dynamic sensory filter.
    Bastian J
    J Neurophysiol; 1996 Oct; 76(4):2483-96. PubMed ID: 8899621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hormonal coordination of motor output and internal prediction of sensory consequences in an electric fish.
    Fukutomi M; Carlson BA
    Curr Biol; 2023 Aug; 33(16):3350-3359.e4. PubMed ID: 37490922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinct mechanisms of modulation in a neuronal oscillator generate different social signals in the electric fish Hypopomus.
    Kawasaki M; Heiligenberg W
    J Comp Physiol A; 1989 Oct; 165(6):731-41. PubMed ID: 2810147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Storage of a sensory pattern by anti-Hebbian synaptic plasticity in an electric fish.
    Bell CC; Caputi A; Grant K; Serrier J
    Proc Natl Acad Sci U S A; 1993 May; 90(10):4650-4. PubMed ID: 8506312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensory coding and corollary discharge effects in mormyrid electric fish.
    Bell CC
    J Exp Biol; 1989 Sep; 146():229-53. PubMed ID: 2689564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parallel projection of amplitude and phase information from the hindbrain to the midbrain of the African electric fish Gymnarchus niloticus.
    Kawasaki M; Guo YX
    J Neurosci; 1998 Sep; 18(18):7599-611. PubMed ID: 9736677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An in vitro physiological preparation of a vertebrate communicatory behavior: chirping in the weakly electric fish, Apteronotus.
    Dye J
    J Comp Physiol A; 1988 Aug; 163(4):445-58. PubMed ID: 3184007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The control of pacemaker modulations for social communication in the weakly electric fish Sternopygus.
    Keller CH; Kawasaki M; Heiligenberg W
    J Comp Physiol A; 1991 Oct; 169(4):441-50. PubMed ID: 1685751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of behavior-related excitatory inputs to a central pacemaker nucleus in a weakly electric fish.
    Curti S; Comas V; Rivero C; Borde M
    Neuroscience; 2006 Jun; 140(2):491-504. PubMed ID: 16563638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From distributed sensory processing to discrete motor representations in the diencephalon of the electric fish, Eigenmannia.
    Keller CH; Heiligenberg W
    J Comp Physiol A; 1989 Feb; 164(5):565-76. PubMed ID: 2565397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural strategies for optimal processing of sensory signals.
    Maler L
    Prog Brain Res; 2007; 165():135-54. PubMed ID: 17925244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of the jamming avoidance response and its morphological correlates in the gymnotiform electric fish, Eigenmannia.
    Hagedorn M; Vischer HA; Heiligenberg W
    J Neurobiol; 1992 Dec; 23(10):1446-66. PubMed ID: 1487744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.