These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8145640)

  • 1. Genetic characterization of a Rhizobium meliloti lactose utilization locus.
    Jelesko JG; Leigh JA
    Mol Microbiol; 1994 Jan; 11(1):165-73. PubMed ID: 8145640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti.
    Bringhurst RM; Gage DJ
    J Bacteriol; 2002 Oct; 184(19):5385-92. PubMed ID: 12218025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The regulation of expression of the Lactococcus lactis lactose operon.
    Griffin HG; Gasson MJ
    Lett Appl Microbiol; 1993 Aug; 17(2):92-6. PubMed ID: 7763936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular and expression analysis of the Rhizobium meliloti phosphoenolpyruvate carboxykinase (pckA) gene.
    Osterås M; Driscoll BT; Finan TM
    J Bacteriol; 1995 Mar; 177(6):1452-60. PubMed ID: 7883700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding site determinants for the LysR-type transcriptional regulator PcaQ in the legume endosymbiont Sinorhizobium meliloti.
    MacLean AM; Anstey MI; Finan TM
    J Bacteriol; 2008 Feb; 190(4):1237-46. PubMed ID: 18055594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of bacterial luciferase genes as reporter genes in Lactococcus: regulation of the Lactococcus lactis subsp. lactis lactose genes.
    Eaton TJ; Shearman CA; Gasson MJ
    J Gen Microbiol; 1993 Jul; 139(7):1495-501. PubMed ID: 8371112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and characterization of a novel beta-galactosidase-coding gene from Rhizobium meliloti.
    Fanning S; O'Gara F
    Gene; 1988 Nov; 71(1):57-64. PubMed ID: 3145908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the expression of rhizobial genes during nodule development with elements and an inducer of the lac operon.
    Box J; Noel KD
    Mol Plant Microbe Interact; 2011 Apr; 24(4):478-86. PubMed ID: 21375387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LacR is a repressor of lacABCD and LacT is an activator of lacTFEG, constituting the lac gene cluster in Streptococcus pneumoniae.
    Afzal M; Shafeeq S; Kuipers OP
    Appl Environ Microbiol; 2014 Sep; 80(17):5349-58. PubMed ID: 24951784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of lactose utilization genes in Staphylococcus xylosus.
    Bassias J; Brückner R
    J Bacteriol; 1998 May; 180(9):2273-9. PubMed ID: 9573174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular analysis of the lac operon encoding the binding-protein-dependent lactose transport system and beta-galactosidase in Agrobacterium radiobacter.
    Williams SG; Greenwood JA; Jones CW
    Mol Microbiol; 1992 Jul; 6(13):1755-68. PubMed ID: 1630315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of the lacA gene encoding beta-galactosidase in Bacillus subtilis and a regulator gene, lacR.
    Daniel RA; Haiech J; Denizot F; Errington J
    J Bacteriol; 1997 Sep; 179(17):5636-8. PubMed ID: 9287030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of NAD(+)- and NADP(+)-dependent malic enzymes of Rhizobium (Sinorhizobium) meliloti and differential expression of their genes in nitrogen-fixing bacteroids.
    Driscoll BT; Finan TM
    Microbiology (Reading); 1997 Feb; 143 ( Pt 2)():489-498. PubMed ID: 9043124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bistability and Nonmonotonic Induction of the lac Operon in the Natural Lactose Uptake System.
    Zander D; Samaga D; Straube R; Bettenbrock K
    Biophys J; 2017 May; 112(9):1984-1996. PubMed ID: 28494968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Rhizobium meliloti putA gene: its role in the establishment of the symbiotic interaction with alfalfa.
    Jiménez-Zurdo JI; García-Rodríguez FM; Toro N
    Mol Microbiol; 1997 Jan; 23(1):85-93. PubMed ID: 9004223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and characterization of the pyruvate carboxylase from Sinorhizobium meliloti Rm1021.
    Dunn MF; Araíza G; Finan TM
    Arch Microbiol; 2001 Nov; 176(5):355-63. PubMed ID: 11702077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sinorhizobium meliloti pSymB carries genes necessary for arabinose transport and catabolism.
    Poysti NJ; Loewen EDM; Wang Z; Oresnik IJ
    Microbiology (Reading); 2007 Mar; 153(Pt 3):727-736. PubMed ID: 17322193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three genes of a motility operon and their role in flagellar rotary speed variation in Rhizobium meliloti.
    Platzer J; Sterr W; Hausmann M; Schmitt R
    J Bacteriol; 1997 Oct; 179(20):6391-9. PubMed ID: 9335288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RpoN of Rhizobium leguminosarum bv. viciae strain VF39SM plays a central role in FnrN-dependent microaerobic regulation of genes involved in nitrogen fixation.
    Clark SR; Oresnik IJ; Hynes MF
    Mol Gen Genet; 2001 Jan; 264(5):623-33. PubMed ID: 11212917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative promoter cloning plasmid vectors for Rhizobium meliloti.
    Elö P; Semsey S; Kereszt A; Nagy T; Papp P; Orosz L
    FEMS Microbiol Lett; 1998 Feb; 159(1):7-13. PubMed ID: 9485589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.