These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8145859)

  • 1. How do outgrowing electrosensory nerve fibers find their peripheral electroreceptor sites?
    Roth A
    Naturwissenschaften; 1994 Feb; 81(2):89-91. PubMed ID: 8145859
    [No Abstract]   [Full Text] [Related]  

  • 2. Regenerative outgrowth and distribution of the electroreceptive nerve fibers in the catfish Kryptopterus.
    Roth A
    J Comp Neurol; 1993 Feb; 328(4):473-84. PubMed ID: 8429130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological differences between two morphological types of fibers.
    Bell CC
    J Neurophysiol; 1990 Feb; 63(2):319-32. PubMed ID: 2313348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axon guidance during establishment of electroreceptor innervation in the catfish Kryptopterus.
    Roth A
    Eur J Neurosci; 2006 Mar; 23(5):1129-41. PubMed ID: 16553777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. II. Intra-axonal recordings show initial stages of central processing.
    Bell CC
    J Neurophysiol; 1990 Feb; 63(2):303-18. PubMed ID: 2313347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroreceptor mechanisms in mormyrid fish.
    Szabo T
    Neurosci Res Program Bull; 1970 Dec; 8(5):499-501. PubMed ID: 5527320
    [No Abstract]   [Full Text] [Related]  

  • 7. Electroreceptor model of the weakly electric fish Gnathonemus petersii. I. The model and the origin of differences between A- and B-receptors.
    Shuai J; Kashimori Y; Kambara T
    Biophys J; 1998 Oct; 75(4):1712-26. PubMed ID: 9746513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mormyrid electrosensory lobe in vitro: morphology of cells and circuits.
    Han VZ; Bell CC; Grant K; Sugawara Y
    J Comp Neurol; 1999 Feb; 404(3):359-74. PubMed ID: 9952353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish: I. Morphology.
    Bell CC; Zakon H; Finger TE
    J Comp Neurol; 1989 Aug; 286(3):391-407. PubMed ID: 2768566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The emergence of electroreceptor organs in regenerating fish skin and concurrent changes in their transduction properties.
    Teunis PF; Vredevoogd W; Weterings C; Bretschneider F; Peters RC
    Neuroscience; 1991; 45(1):205-12. PubMed ID: 1754064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From stimulus encoding to feature extraction in weakly electric fish.
    Gabbiani F; Metzner W; Wessel R; Koch C
    Nature; 1996 Dec; 384(6609):564-7. PubMed ID: 8955269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primate cutaneous sensory units with unmyelinated (C) afferent fibers.
    Kumazawa T; Perl ER
    J Neurophysiol; 1977 Nov; 40(6):1325-38. PubMed ID: 411895
    [No Abstract]   [Full Text] [Related]  

  • 14. Crayfish CNS: minimal degenerative-regenerative changes after lesioning.
    Bittner GD; Ballinger ML; Larimer JL
    J Exp Zool; 1974 Jul; 189(1):13-36. PubMed ID: 4837872
    [No Abstract]   [Full Text] [Related]  

  • 15. Train signals for electric fish.
    Maler L
    Nature; 1996 Dec; 384(6609):517-8. PubMed ID: 8955265
    [No Abstract]   [Full Text] [Related]  

  • 16. Encoding and processing biologically relevant temporal information in electrosensory systems.
    Fortune ES; Rose GJ; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jun; 192(6):625-35. PubMed ID: 16450118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring direction in the coupling of biological oscillators: a case study for electroreceptors of paddlefish.
    Brea J; Russell DF; Neiman AB
    Chaos; 2006 Jun; 16(2):026111. PubMed ID: 16822043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peripheral organization and central projections of the electrosensory nerves in gymnotiform fish.
    Carr CE; Maler L; Sas E
    J Comp Neurol; 1982 Oct; 211(2):139-53. PubMed ID: 7174886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonrenewal statistics of electrosensory afferent spike trains: implications for the detection of weak sensory signals.
    Ratnam R; Nelson ME
    J Neurosci; 2000 Sep; 20(17):6672-83. PubMed ID: 10964972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Functional characteristics of the electroreceptors of the Lorenzini ampullae of Black Sea skates].
    Akoev GN; Il'inskiĭ OB
    Dokl Akad Nauk SSSR; 1972 Jul; 205(2):499-501. PubMed ID: 5050970
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.