BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 8146190)

  • 1. The "eRF" clone corresponds to tryptophanyl-tRNA synthetase, not mammalian release factor.
    Timchenko L; Caskey CT
    Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2777-80. PubMed ID: 8146190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mammalian tryptophanyl-tRNA synthetase shows little homology to prokaryotic synthetases but near identity with mammalian peptide chain release factor.
    Garret M; Pajot B; Trézéguet V; Labouesse J; Merle M; Gandar JC; Benedetto JP; Sallafranque ML; Alterio J; Gueguen M
    Biochemistry; 1991 Aug; 30(31):7809-17. PubMed ID: 1907847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian polypeptide chain release factor and tryptophanyl-tRNA synthetase are distinct proteins.
    Frolova LYu ; Dalphin ME; Justesen J; Powell RJ; Drugeon G; McCaughan KK; Kisselev LL; Tate WP; Haenni AL
    EMBO J; 1993 Oct; 12(10):4013-9. PubMed ID: 8404867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human interferon gamma potently induces the synthesis of a 55-kDa protein (gamma 2) highly homologous to rabbit peptide chain release factor and bovine tryptophanyl-tRNA synthetase.
    Fleckner J; Rasmussen HH; Justesen J
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11520-4. PubMed ID: 1763065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and expression of a mammalian peptide chain release factor with sequence similarity to tryptophanyl-tRNA synthetases.
    Lee CC; Craigen WJ; Muzny DM; Harlow E; Caskey CT
    Proc Natl Acad Sci U S A; 1990 May; 87(9):3508-12. PubMed ID: 2185472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interferon inducibility of mammalian tryptophanyl-tRNA synthetase: new perspectives.
    Kisselev L; Frolova L; Haenni AL
    Trends Biochem Sci; 1993 Jul; 18(7):263-7. PubMed ID: 7692626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are the tryptophanyl-tRNA synthetase and the peptide-chain-release factor from higher eukaryotes one and the same protein?
    Frolova LYu ; Fleckner J; Justesen J; Timms KM; Tate WP; Kisselev LL; Haenni AL
    Eur J Biochem; 1993 Mar; 212(2):457-66. PubMed ID: 8444184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence based structural analysis of tryptophan analogue-AMP formation in single tryptophan mutants of Bacillus stearothermophilus tryptophanyl-tRNA synthetase.
    Acchione M; Guillemette JG; Twine SM; Hogue CW; Rajendran B; Szabo AG
    Biochemistry; 2003 Dec; 42(50):14994-5002. PubMed ID: 14674776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-level expression and single-step purification of human tryptophanyl-tRNA synthetase.
    Xu F; Jia J; Jin Y; Wang DT
    Protein Expr Purif; 2001 Nov; 23(2):296-300. PubMed ID: 11676605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mammalian tryptophanyl-tRNA synthetase is associated with protein kinase activity.
    Paley EL
    Eur J Biochem; 1997 Mar; 244(3):780-8. PubMed ID: 9108248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrates in mammalian tryptophanyl-tRNA synthetase.
    Kovaleva GK; Zheltova AO; Nikitushkina TV; Egorov TA; Musoljamov ACh; Kisselev LL
    FEBS Lett; 1992 Sep; 309(3):337-9. PubMed ID: 1516707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An interferon-induced protein with release factor activity is a tryptophanyl-tRNA synthetase.
    Bange FC; Flohr T; Buwitt U; Böttger EC
    FEBS Lett; 1992 Mar; 300(2):162-6. PubMed ID: 1373391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of cellular tryptophan metabolism in human fibroblasts by transforming growth factor-beta: selective inhibition of indoleamine 2,3-dioxygenase and tryptophanyl-tRNA synthetase gene expression.
    Yuan W; Collado-Hidalgo A; Yufit T; Taylor M; Varga J
    J Cell Physiol; 1998 Oct; 177(1):174-86. PubMed ID: 9731757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escherichia coli tryptophanyl-tRNA synthetase mutants selected for tryptophan auxotrophy implicate the dimer interface in optimizing amino acid binding.
    Sever S; Rogers K; Rogers MJ; Carter C; Söll D
    Biochemistry; 1996 Jan; 35(1):32-40. PubMed ID: 8555191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of guanine nucleotides and elongation factors on interaction of release factors with the ribosome.
    Tate WP; Beaudet AL; Caskey CT
    Proc Natl Acad Sci U S A; 1973 Aug; 70(8):2350-5. PubMed ID: 4525170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antizyme frameshifting as a functional probe of eukaryotic translational termination.
    Karamysheva ZN; Karamyshev AL; Ito K; Yokogawa T; Nishikawa K; Nakamura Y; Matsufuji S
    Nucleic Acids Res; 2003 Oct; 31(20):5949-56. PubMed ID: 14530443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of tryptophan tRNA recognition sites for tryptophanyl-tRNA synthetase from hyperthermophilic archaeon, Aeropyrum pernix K1.
    Tsuchiya W; Umehara T; Kuno A; Hasegawa T
    Nucleic Acids Symp Ser (Oxf); 2004; (48):185-6. PubMed ID: 17150540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eyeing up tryptophanyl-tRNA synthetase.
    Ibba M
    Trends Biochem Sci; 2002 May; 27(5):227. PubMed ID: 12076529
    [No Abstract]   [Full Text] [Related]  

  • 19. [A method for detecting protein-protein interactions. Detection of proteins with the molecular weight of approximately 37 kD binding with tryptophanyl-tRNA-synthetase].
    Beresten' SF; Rubikaĭte BI; Kiselev LL
    Bioorg Khim; 1987 Oct; 13(10):1325-30. PubMed ID: 3435556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and activity of an aminoacyl-tRNA synthetase that charges tRNA with nitro-tryptophan.
    Buddha MR; Crane BR
    Nat Struct Mol Biol; 2005 Mar; 12(3):274-5. PubMed ID: 15723076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.