These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8146872)

  • 1. Characterization of ruminal bacteria producing a toxin associated with a bovine paraplegic syndrome.
    Domínguez-Bello MG; Lovera M; Sevcik C; Brito JC
    Toxicon; 1993 Dec; 31(12):1595-600. PubMed ID: 8146872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicology of a bovine paraplegic syndrome.
    Sevcik C; Brito JC; D'Suze G; Domínguez-Bello MG; Lovera M; Mijares AJ; Bónoli S
    Toxicon; 1993 Dec; 31(12):1581-94. PubMed ID: 8146871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Enterobacter bacteria as saxitoxin producers in cattle's rumen and surface water from Venezuelan Savannahs.
    Sevcik C; Noriega J; D'Suze G
    Toxicon; 2003 Sep; 42(4):359-66. PubMed ID: 14505935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Toxinology of bovine paraplegic syndrome].
    Sevcik C; Brito JC; D'Suze G; Mijares AJ; Domínguez MG
    Acta Cient Venez; 1993; 44(2):131-42. PubMed ID: 8085407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipopolysaccharide Stimulates the Growth of Bacteria That Contribute to Ruminal Acidosis.
    Dai X; Hackmann TJ; Lobo RR; Faciola AP
    Appl Environ Microbiol; 2020 Feb; 86(4):. PubMed ID: 31811042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of botulism and tetanus as causative agents of an outbreak of bovine paraplegic mortality in the eastern plains of Colombia.
    Benavides E; Ortiz D; Benavides J
    Ann N Y Acad Sci; 2000; 916():646-9. PubMed ID: 11193691
    [No Abstract]   [Full Text] [Related]  

  • 7. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.
    Min BR; Pinchak WE; Anderson RC; Hume ME
    J Anim Sci; 2006 Oct; 84(10):2873-82. PubMed ID: 16971591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between Euphorbia esula toxins and bovine ruminal microbes.
    Kronberg SL; Halaweish FT; Hubert MB; Weimer PJ
    J Chem Ecol; 2006 Jan; 32(1):15-28. PubMed ID: 16525867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short communication: bovine paraplegic syndrome (Mal de Aquidabàn) in Paraguay caused by C. perfringens toxovar D.
    Müller W; Zucker BA; Sánches AR; Ulmer S; Younan M
    Berl Munch Tierarztl Wochenschr; 1998 Jun; 111(6):214-6. PubMed ID: 9674311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of repeated subacute ruminal acidosis challenges on the adaptation of the rumen bacterial community in Holstein bulls.
    Nagata R; Kim YH; Ohkubo A; Kushibiki S; Ichijo T; Sato S
    J Dairy Sci; 2018 May; 101(5):4424-4436. PubMed ID: 29477528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adherence of ruminal Streptococcus bovis and Lactobacillus strains to primary and secondary cultures of rumen epithelium.
    Styriak I; Gálfi P; Kmet V
    Acta Microbiol Hung; 1992; 39(3-4):323-5. PubMed ID: 1343946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The bacteriocins of ruminal bacteria and their potential as an alternative to antibiotics.
    Russell JB; Mantovani HC
    J Mol Microbiol Biotechnol; 2002 Jul; 4(4):347-55. PubMed ID: 12125815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ruminal metabolism of plant toxins with emphasis on indolic compounds.
    Carlson JR; Breeze RG
    J Anim Sci; 1984 Apr; 58(4):1040-9. PubMed ID: 6373706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of parakeratosis on bacterial adherence to ruminal epithelium.
    Semjén G; Gálfi P; Kutas F
    Zentralbl Veterinarmed B; 1982 May; 29(4):317-9. PubMed ID: 7124202
    [No Abstract]   [Full Text] [Related]  

  • 15. [Rumen fluid studies in calves with abnormal and normal sucking behavior].
    Bättig U; Regi G; Stocker H; Zähner M; Rüsch P
    Tierarztl Prax; 1992 Feb; 20(1):44-8. PubMed ID: 1509478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and identification of rumen bacteria capable of anaerobic phloroglucinol degradation.
    Tsai CG; Jones GA
    Can J Microbiol; 1975 Jun; 21(6):794-801. PubMed ID: 1170929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in ruminal and reticular pH and bacterial communities in Holstein cattle fed a high-grain diet.
    Kim YH; Nagata R; Ohkubo A; Ohtani N; Kushibiki S; Ichijo T; Sato S
    BMC Vet Res; 2018 Oct; 14(1):310. PubMed ID: 30314483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zoonotic bacterial populations, gut fermentation characteristics and methane production in feedlot steers during oral nitroethane treatment and after the feeding of an experimental chlorate product.
    Gutierrez-Bañuelos H; Anderson RC; Carstens GE; Slay LJ; Ramlachan N; Horrocks SM; Callaway TR; Edrington TS; Nisbet DJ
    Anaerobe; 2007 Feb; 13(1):21-31. PubMed ID: 17208022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of subacute ruminal acidosis (SARA) adaptation and recovery on the density and diversity of bacteria in the rumen of dairy cows.
    Hook SE; Steele MA; Northwood KS; Dijkstra J; France J; Wright AD; McBride BW
    FEMS Microbiol Ecol; 2011 Nov; 78(2):275-84. PubMed ID: 21692816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for the selective enumeration and isolation of ruminal Lactobacillus and Streptococcus.
    Yanke LJ; Cheng KJ
    Lett Appl Microbiol; 1998 Apr; 26(4):248-52. PubMed ID: 9633088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.