These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 8147293)
1. Effect of dietary magnesium on post mortem phosphocreatine utilization in skeletal muscle of swine: a non-invasive study using 31P-NMR spectroscopy. Moesgaard B; Larsen IE; Quistorff B; Therkelsen I; Christensen VG; Jørgensen PF Acta Vet Scand; 1993; 34(4):397-404. PubMed ID: 8147293 [TBL] [Abstract][Full Text] [Related]
2. Differences of post-mortem ATP turnover in skeletal muscle of normal and heterozygote malignant-hyperthermia pigs: Comparison of (31)P-NMR and analytical biochemical measurements. Moesgaard B; Quistorff B; Christensen VG; Therkelsen I; Jørgensen PF Meat Sci; 1995; 39(1):43-57. PubMed ID: 22059762 [TBL] [Abstract][Full Text] [Related]
3. In vivo muscle 31P nuclear magnetic resonance spectroscopy during treatment of halothane-sensitive and halothane-nonsensitive pigs. Geers R; Decanniere C; Villé H; Van Hecke P; Goedseels V; Vanstapel F; Bosschaerts L; De Ley J; Zhang W; Janssens S Am J Vet Res; 1992 Apr; 53(4):613-6. PubMed ID: 1586038 [TBL] [Abstract][Full Text] [Related]
4. Metabolic response to halothane in piglets susceptible to malignant hyperthermia: an in vivo 31P-NMR study. Decanniere C; Van Hecke P; Vanstapel F; Villé H; Geers R J Appl Physiol (1985); 1993 Aug; 75(2):955-62. PubMed ID: 8226501 [TBL] [Abstract][Full Text] [Related]
5. Variability of energy metabolism and nuclear T3-receptors within the skeletal muscle tissue of pigs different with respect to the halothane gene. Geers R; Decanniere C; Rosier A; Villé H; Van Hecke P; Vandesande F; Jourquin J J Anim Sci; 1996 Apr; 74(4):717-22. PubMed ID: 8727990 [TBL] [Abstract][Full Text] [Related]
6. The effect of succinylcholine on energy metabolism studied by 31P-NMR spectroscopy in rat denervated skeletal muscle. Mizogami M; Fujibayashi T; Harada J; Goto Y Acta Anaesthesiol Scand; 1996 Apr; 40(4):431-6. PubMed ID: 8738687 [TBL] [Abstract][Full Text] [Related]
7. 31P NMR study of phosphorus metabolites in fast and slow muscles. Uhrín P; Liptaj T Int J Biochem; 1990; 22(10):1133-8. PubMed ID: 2289618 [TBL] [Abstract][Full Text] [Related]
8. Curare and post-mortem changes in skeletal muscle of Piétrain pigs. McLoughlin JV Proc R Ir Acad B; 1974; 74(19):305-12. PubMed ID: 4445142 [No Abstract] [Full Text] [Related]
9. Post-mortem high-energy phosphate and glycolytic changes in two skeletal muscles of the ox [proceedings]. Mothersill C; McLoughlin JV Biochem Soc Trans; 1977; 5(6):1741-4. PubMed ID: 598584 [No Abstract] [Full Text] [Related]
10. 31P NMR study of postmortem metabolism in porcine and bovine muscles. Uhrín P; Litpaj T Gen Physiol Biophys; 1991 Feb; 10(1):83-93. PubMed ID: 1869045 [TBL] [Abstract][Full Text] [Related]
11. Identification of halothane gene carriers by use of in vivo 31P nuclear magnetic resonance spectroscopy in pigs. Geers R; Decanniere C; Villé H; Van Hecke P; Goedseels V; Bosschaerts L; Deley J; Janssens S; Nierynck W Am J Vet Res; 1992 Sep; 53(9):1711-4. PubMed ID: 1416381 [TBL] [Abstract][Full Text] [Related]
12. Functional coupling of glycolysis and phosphocreatine utilization in anoxic fish muscle. An in vivo 31P NMR study. Van Waarde A; Van den Thillart G; Erkelens C; Addink A; Lugtenburg J J Biol Chem; 1990 Jan; 265(2):914-23. PubMed ID: 2295625 [TBL] [Abstract][Full Text] [Related]
13. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR. Yoshizaki K; Watari H; Radda GK Biochim Biophys Acta; 1990 Feb; 1051(2):144-50. PubMed ID: 2310769 [TBL] [Abstract][Full Text] [Related]
14. Non-invasive evaluation of malignant hyperthermia susceptibility with phosphorus nuclear magnetic resonance spectroscopy. Olgin J; Argov Z; Rosenberg H; Tuchler M; Chance B Anesthesiology; 1988 Apr; 68(4):507-13. PubMed ID: 3354887 [TBL] [Abstract][Full Text] [Related]
15. Phosphorus nuclear magnetic resonance: a non-invasive technique for the study of muscle bioenergetics during exercise. Sapega AA; Sokolow DP; Graham TJ; Chance B Med Sci Sports Exerc; 1987 Aug; 19(4):410-20. PubMed ID: 3309542 [TBL] [Abstract][Full Text] [Related]
16. Impaired aerobic glycolysis in muscle phosphofructokinase deficiency results in biphasic post-exercise phosphocreatine recovery in 31P magnetic resonance spectroscopy. Grehl T; Müller K; Vorgerd M; Tegenthoff M; Malin JP; Zange J Neuromuscul Disord; 1998 Oct; 8(7):480-8. PubMed ID: 9829278 [TBL] [Abstract][Full Text] [Related]
17. In vivo induced malignant hyperthermia in pigs. II. Metabolism of skeletal muscle mitochondria. Ruitenbeek W; Verburg MP; Janssen AJ; Stadhouders AM; Sengers RC Acta Anaesthesiol Scand; 1984 Feb; 28(1):9-13. PubMed ID: 6711268 [TBL] [Abstract][Full Text] [Related]
18. [In vivo investigations of stress susceptibility in pigs by means of magnetic resonance spectroscopy]. Kallweit E; Baulain U; Henning M; Kohn G Dtsch Tierarztl Wochenschr; 1997 Sep; 104(9):380-3. PubMed ID: 9410728 [TBL] [Abstract][Full Text] [Related]
19. Halothane-induced malignant hyperthermia: creatine phosphate concentration in skeletal muscle as an early indicator of the onset of the syndrome. Ahern CP; Somers CJ; Wilson P; McLoughlin JV J Comp Pathol; 1980 Apr; 90(2):177-86. PubMed ID: 7430447 [No Abstract] [Full Text] [Related]
20. 31P NMR relaxation does not affect the quantitation of changes in phosphocreatine, inorganic phosphate, and ATP measured in vivo during complete ischemia in swine brain. Corbett RJ; Laptook AR J Neurochem; 1993 Jul; 61(1):144-9. PubMed ID: 8515260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]