These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 814897)

  • 1. The action of hydrogen peroxide on the hydroxylation of p-coumaric acid by spinach-beet phenolase.
    Vaughan PF; McIntyre RJ
    Biochem J; 1975 Dec; 151(3):759-62. PubMed ID: 814897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic studies on the hydroxylation of p-coumaric acid to caffeic acid by spinach-beet phenolase.
    McIntyre RJ; Vaughan PF
    Biochem J; 1975 Aug; 149(2):447-61. PubMed ID: 170916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The action of o-dihydric phenols in the hydroxylation of p-coumaric acid by a phenolase from leaves of spinach beet (Beta vulgaris L.).
    Vaughan PF; Butt VS
    Biochem J; 1970 Aug; 119(1):89-94. PubMed ID: 4991965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The expression of catechol oxidase activity during the hydroxylation of p-coumaric acid by spinach-beet phenolase.
    Vaughan PF; Butt VS
    Biochem J; 1972 May; 127(4):641-7. PubMed ID: 4346745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxylation of p-Coumaric acid by illuminated chloroplasts. The role of superoxide.
    Halliwell B
    Eur J Biochem; 1975 Jul; 55(2):355-60. PubMed ID: 235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The suppression of catechol oxidase activity during the enzymic hydroxylation of p-coumaric acid by spinach leaf phenolase.
    Vaughan PF; Butt VS
    Biochem J; 1969 Mar; 111(5):32P. PubMed ID: 4306461
    [No Abstract]   [Full Text] [Related]  

  • 7. Diphenol activation of the monophenolase and diphenolase activities of field bean (Dolichos lablab) polyphenol oxidase.
    Gowda LR; Paul B
    J Agric Food Chem; 2002 Mar; 50(6):1608-14. PubMed ID: 11879044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of p-coumaric acid to caffeic acid and of p-hydroxyphenylacetic acid to 3,4-dihydroxyphenylacetic acid by Alnus rubra.
    Li CY
    Lloydia; 1977; 40(3):298-30. PubMed ID: 895387
    [No Abstract]   [Full Text] [Related]  

  • 9. The hydroxylation of p-coumaric acid by an enzyme from leaves of spinach beet (Beta vulgaris L.).
    Vaughan PF; Butt VS
    Biochem J; 1969 Jun; 113(1):109-15. PubMed ID: 4389984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of excited states during the oxidation of caffeic and 3,4 dihydroxyphenylacetic acids catalyzed by catechol oxidase.
    Villablanca M
    An Acad Bras Cienc; 1986 Dec; 58(4):557-60. PubMed ID: 3118748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxylation of p-coumaric acid by horseradish peroxidase. The role of superoxide and hydroxyl radicals.
    Halliwell B; Ahluwalia S
    Biochem J; 1976 Mar; 153(3):513-8. PubMed ID: 942369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new spectrophotometric method for the determination of cresolase activity of epidermis tyrosinase.
    Carmona FG; Pedreño E; Galindo JD; Cánovas FG
    Anal Biochem; 1979 Jun; 95(2):433-5. PubMed ID: 110171
    [No Abstract]   [Full Text] [Related]  

  • 13. Enzymatic hydroxylation of m-coumaric acid by mice liver hydroxylase.
    Bajaj KL; Singh J; Chakravarti P
    Indian J Exp Biol; 1977 May; 15(5):381-3. PubMed ID: 924532
    [No Abstract]   [Full Text] [Related]  

  • 14. Grape skins (Vitis vinifera L.) catalyze the in vitro enzymatic hydroxylation of p-coumaric acid to caffeic acid.
    Arnous A; Meyer AS
    Biotechnol Lett; 2009 Dec; 31(12):1953-60. PubMed ID: 19696970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of caffeic and p-coumaric acids on indole-3-acetic acid catabolism.
    Tafuri F; Businelli M; Scarponi L
    J Sci Food Agric; 1972 Dec; 23(12):1417-23. PubMed ID: 4633913
    [No Abstract]   [Full Text] [Related]  

  • 16. Biotechnological production of caffeic acid by bacterial cytochrome P450 CYP199A2.
    Furuya T; Arai Y; Kino K
    Appl Environ Microbiol; 2012 Sep; 78(17):6087-94. PubMed ID: 22729547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rewriting the lignin roadmap.
    Humphreys JM; Chapple C
    Curr Opin Plant Biol; 2002 Jun; 5(3):224-9. PubMed ID: 11960740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of a phenolase preparation from cell suspension cultures of parsley.
    Schill L; Grisebach H
    Hoppe Seylers Z Physiol Chem; 1973 Dec; 354(12):1555-62. PubMed ID: 4215721
    [No Abstract]   [Full Text] [Related]  

  • 19. Biotransformation of cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid by plant cell cultures of Eucalyptus perriniana.
    Katsuragi H; Shimoda K; Kubota N; Nakajima N; Hamada H; Hamada H
    Biosci Biotechnol Biochem; 2010; 74(9):1920-4. PubMed ID: 20834169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate specificity of catechol oxidase from Lycopus europaeus and characterization of the bioproducts of enzymic caffeic acid oxidation.
    Rompel A; Fischer H; Meiwes D; Büldt-Karentzopoulos K; Magrini A; Eicken C; Gerdemann C; Krebs B
    FEBS Lett; 1999 Feb; 445(1):103-10. PubMed ID: 10069382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.