BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8149582)

  • 1. Changes in protein expression associated with the developmental transition from permissive to restrictive states of spinal cord repair in embryonic chick.
    Ethell DW; Steeves JD
    Brain Res Dev Brain Res; 1993 Dec; 76(2):163-9. PubMed ID: 8149582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental transition by spinal cord plasma membranes of embryonic chick from permissive to restrictive substrates for the morphological differentiation of neuroblastoma x glioma hybrid NG108-15 cell.
    Ethell DW; Steeves JD; Jordan LM; Cheng KW
    Brain Res Dev Brain Res; 1993 Mar; 72(1):1-8. PubMed ID: 8453760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of the onset of myelination extends the permissive period for the functional repair of embryonic spinal cord.
    Keirstead HS; Hasan SJ; Muir GD; Steeves JD
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11664-8. PubMed ID: 1281541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of novel developmentally regulated proteins in rat spinal cord.
    Geschwind DH; Kelly GM; Fryer H; Feeser-Bhatt H; Hockfield S
    Brain Res Dev Brain Res; 1996 Nov; 97(1):62-75. PubMed ID: 8946055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes within maturing neurons limit axonal regeneration in the developing spinal cord.
    Blackmore M; Letourneau PC
    J Neurobiol; 2006 Mar; 66(4):348-60. PubMed ID: 16408302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raphe-spinal neurons display an age-dependent differential capacity for neurite outgrowth compared to other brainstem-spinal populations.
    Borisoff JF; Pataky DM; McBride CB; Steeves JD
    Exp Neurol; 2000 Nov; 166(1):16-28. PubMed ID: 11031080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord.
    Berki AC; O'Donovan MJ; Antal M
    J Comp Neurol; 1995 Nov; 362(4):583-96. PubMed ID: 8636469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional repair of transected spinal cord in embryonic chick.
    Hasan SJ; Nelson BH; Valenzuela JI; Keirstead HS; Shull SE; Ethell DW; Steeves JD
    Restor Neurol Neurosci; 1991 Jan; 2(3):137-54. PubMed ID: 21551594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-translational regulation of Crmp in developing and regenerating chick spinal cord.
    Gögel S; Lange S; Leung KY; Greene ND; Ferretti P
    Dev Neurobiol; 2010 May; 70(6):456-71. PubMed ID: 20162635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in response to spinal cord injury with development: vascularization, hemorrhage and apoptosis.
    Whalley K; O'Neill P; Ferretti P
    Neuroscience; 2006 Feb; 137(3):821-32. PubMed ID: 16289582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Developmental aspects of regeneration of the spinal cord (observations on chick embryos)].
    Sedlácek J; Doskocil M
    Cesk Neurol Neurochir; 1989 Oct; 52(6):359-64. PubMed ID: 2635074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in spinal cord regenerative ability through phylogenesis and development: lessons to be learnt.
    Ferretti P; Zhang F; O'Neill P
    Dev Dyn; 2003 Feb; 226(2):245-56. PubMed ID: 12557203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axon kinematics change during growth and development.
    Hao H; Shreiber DI
    J Biomech Eng; 2007 Aug; 129(4):511-22. PubMed ID: 17655472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L1, beta1 integrin, and cadherins mediate axonal regeneration in the embryonic spinal cord.
    Blackmore M; Letourneau PC
    J Neurobiol; 2006 Dec; 66(14):1564-83. PubMed ID: 17058193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and survival of thoracic motoneurons and hindlimb musculature following transplantation of the thoracic neural tube to the lumbar region in the chick embryo: functional aspects.
    O'Brien MK; Landmesser L; Oppenheim RW
    J Neurobiol; 1990 Mar; 21(2):341-55. PubMed ID: 2307978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permissive and restrictive periods for brainstem-spinal regeneration in the chick.
    Steeves JD; Keirstead HS; Ethell DW; Hasan SJ; Muir GD; Pataky DM; McBride CB; Petrausch B; Zwimpfer TJ
    Prog Brain Res; 1994; 103():243-62. PubMed ID: 7886209
    [No Abstract]   [Full Text] [Related]  

  • 17. Successful neural regeneration in amniotes: the developing chick spinal cord.
    Ferretti P; Whalley K
    Cell Mol Life Sci; 2008 Jan; 65(1):45-53. PubMed ID: 18030420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular correlates of spinal cord repair in the embryonic chick: heparan sulfate and chondroitin sulfate proteoglycans.
    Dow KE; Ethell DW; Steeves JD; Riopelle RJ
    Exp Neurol; 1994 Aug; 128(2):233-8. PubMed ID: 8076667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of gicerin, a cell adhesion molecule, in development and regeneration of chick sciatic nerve.
    Hiroi S; Tsukamoto Y; Sasaki F; Miki N; Taira E
    FEBS Lett; 2003 Nov; 554(3):311-4. PubMed ID: 14623085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental expression of nicotinic receptors in the chick and human spinal cord.
    Keiger CJ; Prevette D; Conroy WG; Oppenheim RW
    J Comp Neurol; 2003 Jan; 455(1):86-99. PubMed ID: 12454998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.