These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8149582)

  • 21. Developmental changes in serotonin levels in the chick spinal cord and brain.
    Okado N; Shibanoki S; Ishikawa K; Sako H
    Brain Res Dev Brain Res; 1989 Dec; 50(2):217-23. PubMed ID: 2611984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regeneration of adult dorsal root axons into transplants of fetal spinal cord and brain: a comparison of growth and synapse formation in appropriate and inappropriate targets.
    Itoh Y; Tessler A
    J Comp Neurol; 1990 Dec; 302(2):272-93. PubMed ID: 2289974
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and survival of thoracic motoneurons and hindlimb musculature following transplantation of the thoracic neural tube to the lumbar region in the chick embryo: anatomical aspects.
    O'Brien MK; Oppenheim RW
    J Neurobiol; 1990 Mar; 21(2):313-40. PubMed ID: 2307977
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spinal cord neuroepithelial progenitor cells display developmental plasticity when co-cultured with embryonic spinal cord slices at different stages of development.
    O' Leary CJ; McDermott KW
    Dev Dyn; 2011 Apr; 240(4):785-95. PubMed ID: 21400633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Agrin mRNA variants are differentially regulated in developing chick embryo spinal cord and sensory ganglia.
    Ma E; Morgan R; Godfrey EW
    J Neurobiol; 1995 Apr; 26(4):585-97. PubMed ID: 7602321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brain-derived proteins that rescue spinal motoneurons from cell death in the chick embryo: comparisons with target-derived and recombinant factors.
    Johnson JE; Wei YQ; Prevette D; Oppenheim RW
    J Neurobiol; 1995 Aug; 27(4):573-89. PubMed ID: 7561835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anatomical and functional recovery following spinal cord transection in the chick embryo.
    Shimizu I; Oppenheim RW; O'Brien M; Shneiderman A
    J Neurobiol; 1990 Sep; 21(6):918-37. PubMed ID: 2077104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ontogeny of high- and low-affinity nerve growth factor receptors in the lumbar spinal cord of the developing chick embryo.
    Marchetti D; Haverkamp LJ; Clark RC; McManaman JL
    Dev Biol; 1991 Nov; 148(1):306-13. PubMed ID: 1657663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression pattern of BM88 in the developing nervous system of the chick and mouse embryo.
    Politis PK; Rohrer H; Matsas R
    Gene Expr Patterns; 2007 Jan; 7(1-2):165-77. PubMed ID: 16949349
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein synthesis in distal axons is not required for axon growth in the embryonic spinal cord.
    Blackmore M; Letourneau PC
    Dev Neurobiol; 2007 Jun; 67(7):976-86. PubMed ID: 17506497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early gene expression during natural spinal cord regeneration in the salamander Ambystoma mexicanum.
    Monaghan JR; Walker JA; Page RB; Putta S; Beachy CK; Voss SR
    J Neurochem; 2007 Apr; 101(1):27-40. PubMed ID: 17241119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transplantation of embryonic chick spinal cord into transection adult chicken spinal cords: a useful model for transplantation research.
    Grady MS; Steward O; Jane JA
    J Neurosci Res; 1985; 14(4):403-14. PubMed ID: 4078939
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Utilization of ketone bodies by chick brain and spinal cord during embryonic and postnatal development.
    Linares A; CaamaƱo GJ; Diaz R; Gonzalez FJ; Garcia-Peregrin E
    Neurochem Res; 1993 Oct; 18(10):1107-12. PubMed ID: 8255360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developmental regulation of sensory axon regeneration in the absence of growth cones.
    Jones SL; Selzer ME; Gallo G
    J Neurobiol; 2006 Dec; 66(14):1630-45. PubMed ID: 17058187
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trophic functions of the neuron. VI. Other trophic systems. The influence of the periphery on spinal motor neurons.
    Price DL
    Ann N Y Acad Sci; 1974 Mar; 228(0):355-63. PubMed ID: 4135389
    [No Abstract]   [Full Text] [Related]  

  • 36. Analysis of the change in number of serotonergic neurons in the chick spinal cord during embryonic development.
    Wallace JA; Allgood PC; Hoffman TJ; Mondragon RM; Maez RR
    Brain Res Bull; 1986 Sep; 17(3):297-305. PubMed ID: 3533221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spinal cord repair: strategies to promote axon regeneration.
    McKerracher L
    Neurobiol Dis; 2001 Feb; 8(1):11-8. PubMed ID: 11162236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and characterization of neuron-specific and developmentally regulated gene transcripts in the chick embryo spinal cord.
    Dickson JG; Prentice HM; Kenimer JG; Walsh FS
    J Neurochem; 1986 Mar; 46(3):787-93. PubMed ID: 2419498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The development of interneurons in the chick embryo spinal cord following in vivo treatment with retinoic acid.
    Shiga T; Gaur VP; Yamaguchi K; Oppenheim RW
    J Comp Neurol; 1995 Sep; 360(3):463-74. PubMed ID: 8543652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Astroglial protein in the developing spinal cord of the chick embryo.
    Bignami A; Dahl D
    Dev Biol; 1975 May; 44(1):204-9. PubMed ID: 1093911
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.