These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8150420)

  • 1. Reduction of red cell glucose transporter intrinsic activity in diabetes running.
    Comi RJ; Hamilton H
    Horm Metab Res; 1994 Jan; 26(1):26-32. PubMed ID: 8150420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GLUT-1 mediation of rapid glucose transport in dolphin (Tursiops truncatus) red blood cells.
    Craik JD; Young JD; Cheeseman CI
    Am J Physiol; 1998 Jan; 274(1):R112-9. PubMed ID: 9458906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence from temperature studies that the human erythrocyte hexose transporter has a transient memory of its dissociated ligands.
    Naftalin RJ
    Exp Physiol; 1998 Mar; 83(2):253-8. PubMed ID: 9568486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human erythrocyte sugar transporter presents two sugar import sites.
    Hamill S; Cloherty EK; Carruthers A
    Biochemistry; 1999 Dec; 38(51):16974-83. PubMed ID: 10606533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic hyperglycemia increases the density of glucose transporters in human erythrocyte membranes.
    Harik SI; Behmand RA; Arafah BM
    J Clin Endocrinol Metab; 1991 Apr; 72(4):814-8. PubMed ID: 2005206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid GLUT-1 mediated glucose transport in erythrocytes from the grey-headed fruit bat (Pteropus poliocephalus).
    Craik JD; Markovich D
    Comp Biochem Physiol A Mol Integr Physiol; 2000 May; 126(1):45-55. PubMed ID: 10908851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP regulation of the human red cell sugar transporter.
    Carruthers A
    J Biol Chem; 1986 Aug; 261(24):11028-37. PubMed ID: 3733746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites.
    Cloherty EK; Levine KB; Carruthers A
    Biochemistry; 2001 Dec; 40(51):15549-61. PubMed ID: 11747430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific interaction between erythrocytes and a glucose-carrying polymer mediated by the type-1 glucose transporter (GLUT-1) on the cell membrane.
    Park KH; Takei R; Goto M; Maruyama A; Kobayashi A; Kobayashi K; Akaike T
    J Biochem; 1997 Jun; 121(6):997-1001. PubMed ID: 9354367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
    Sultzman LA; Carruthers A
    Biochemistry; 1999 May; 38(20):6640-50. PubMed ID: 10350483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The isoelectric point of the human red cell glucose transporter.
    Englund AK; Lundahl P
    Biochim Biophys Acta; 1991 Jun; 1065(2):185-94. PubMed ID: 2059652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycolytic enzymes and a GLUT-1 glucose transporter in the outer segments of rod and cone photoreceptor cells.
    Hsu SC; Molday RS
    J Biol Chem; 1991 Nov; 266(32):21745-52. PubMed ID: 1939198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quench-flow analysis reveals multiple phases of GluT1-mediated sugar transport.
    Blodgett DM; Carruthers A
    Biochemistry; 2005 Feb; 44(7):2650-60. PubMed ID: 15709778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of cytochalasin B to human erythrocyte glucose transporter.
    Sogin DC; Hinkle PC
    Biochemistry; 1980 Nov; 19(23):5417-20. PubMed ID: 7192569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monosaccharide transport system of the human erythrocyte. Identification of the cytochalasin B binding component.
    Lienhard GE; Gorga FR; Orasky JE; Zoccoli MA
    Biochemistry; 1977 Nov; 16(22):4921-6. PubMed ID: 911802
    [No Abstract]   [Full Text] [Related]  

  • 17. Insulin resistance in type 2 (non-insulin-dependent) diabetic patients and their relatives is not associated with a defect in the expression of the insulin-responsive glucose transporter (GLUT-4) gene in human skeletal muscle.
    Eriksson J; Koranyi L; Bourey R; Schalin-Jäntti C; Widén E; Mueckler M; Permutt AM; Groop LC
    Diabetologia; 1992 Feb; 35(2):143-7. PubMed ID: 1547918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Placental glucose transport and GLUT 1 expression in insulin-dependent diabetes.
    Jansson T; Wennergren M; Powell TL
    Am J Obstet Gynecol; 1999 Jan; 180(1 Pt 1):163-8. PubMed ID: 9914598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of correlations between the placental expression of glucose transporters GLUT-1, GLUT-4 and GLUT-9 and selected maternal and fetal parameters in pregnancies complicated by diabetes mellitus.
    Stanirowski PJ; Szukiewicz D; Pyzlak M; Abdalla N; Sawicki W; Cendrowski K
    J Matern Fetal Neonatal Med; 2019 Feb; 32(4):650-659. PubMed ID: 28969476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of pH on the activity of the human red cell glucose transporter Glut 1: transport retention chromatography of D-glucose and L-glucose on immobilized Glut 1 liposomes.
    Lu L; Brekkan E; Haneskog L; Yang Q; Lundahl P
    Biochim Biophys Acta; 1993 Aug; 1150(2):135-46. PubMed ID: 8347668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.