These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8150732)

  • 21. Filtering of distortion-product otoacoustic emissions in the inner ear of birds and lizards.
    Taschenberger G; Gallo L; Manley GA
    Hear Res; 1995 Nov; 91(1-2):87-92. PubMed ID: 8647729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stimulus-frequency otoacoustic emission suppression tuning in humans: comparison to behavioral tuning.
    Charaziak KK; Souza P; Siegel JH
    J Assoc Res Otolaryngol; 2013 Dec; 14(6):843-62. PubMed ID: 24013802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perceptual consequences of the interactions between spontaneous otoacoustic emissions and external tones. I. Monaural diplacusis and aftertones.
    Long G
    Hear Res; 1998 May; 119(1-2):49-60. PubMed ID: 9641318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Further tests of the local nonlinear interaction-based mechanism for simultaneous suppression of tone burst-evoked otoacoustic emissions.
    Killan EC; Lutman ME; Thyer NJ
    Hear Res; 2015 Jan; 319():12-24. PubMed ID: 25446244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.
    Jedrzejczak WW; Kochanek K; Skarzynski H
    PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suppression of distortion product otoacoustic emissions and hearing threshold.
    Pienkowski M; Kunov H
    J Acoust Soc Am; 2001 Apr; 109(4):1496-502. PubMed ID: 11325121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for a mechanical filter in the cochlea of the 'constant frequency' bats, Rhinolophus rouxi and Pteronotus parnellii.
    Kössl M
    Hear Res; 1994 Jan; 72(1-2):73-80. PubMed ID: 8150747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Narrowband stimulation and synchronization of otoacoustic emissions.
    Uppenkamp S; Kollmeier B
    Hear Res; 1994 Aug; 78(2):210-20. PubMed ID: 7982814
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contralateral suppression of non-linear click-evoked otoacoustic emissions.
    Berlin CI; Hood LJ; Wen H; Szabo P; Cecola RP; Rigby P; Jackson DF
    Hear Res; 1993 Dec; 71(1-2):1-11. PubMed ID: 8113128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spontaneous otoacoustic emissions in lizards: a comparison of the skink-like lizard families Cordylidae and Gerrhosauridae.
    Manley GA
    Hear Res; 2009 Sep; 255(1-2):58-66. PubMed ID: 19539017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transient emission suppression tuning curve attributes in relation to psychoacoustic threshold.
    Zettner EM; Folsom RC
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):2031-41. PubMed ID: 12703714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Suppression of stimulus frequency otoacoustic emissions.
    Brass D; Kemp DT
    J Acoust Soc Am; 1993 Feb; 93(2):920-39. PubMed ID: 8445127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning.
    Raufer S; Verhulst S
    Hear Res; 2016 Dec; 342():150-160. PubMed ID: 27989947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-tone suppression of stimulus frequency otoacoustic emissions.
    Keefe DH; Ellison JC; Fitzpatrick DF; Gorga MP
    J Acoust Soc Am; 2008 Mar; 123(3):1479-94. PubMed ID: 18345837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Locus of generation for the 2f1-f2 vs 2f2-f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations.
    Martin GK; Jassir D; Stagner BB; Whitehead ML; Lonsbury-Martin BL
    J Acoust Soc Am; 1998 Apr; 103(4):1957-71. PubMed ID: 9566319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distortion-product otoacoustic emission growth curves in neonates.
    Barbosa TA; Durante AS; Granato L
    Rev Assoc Med Bras (1992); 2014; 60(6):591-8. PubMed ID: 25650862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distortion product otoacoustic emissions created through the interaction of spontaneous otoacoustic emissions and externally generated tones.
    Norrix LW; Glattke TJ
    J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):945-55. PubMed ID: 8759948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acoustic modulation of electrically evoked otoacoustic emission in chickens.
    Sun W; Chen L; Salvi RJ
    Audiol Neurootol; 2002; 7(4):206-13. PubMed ID: 12097720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cochlear compression estimates from measurements of distortion-product otoacoustic emissions.
    Neely ST; Gorga MP; Dorn PA
    J Acoust Soc Am; 2003 Sep; 114(3):1499-507. PubMed ID: 14514203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.