These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 8151518)

  • 1. Middle-ear development. IV. Umbo motion in neonatal mice.
    Doan DE; Cohen YE; Saunders JC
    J Comp Physiol A; 1994 Jan; 174(1):103-10. PubMed ID: 8151518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Middle-ear development VII: umbo velocity in the neonatal rat.
    Doan DE; Igic PG; Saunders JC
    J Acoust Soc Am; 1996 Mar; 99(3):1566-72. PubMed ID: 8819853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Middle-ear development. V: Development of umbo sensitivity in the gerbil.
    Cohen YE; Doan DE; Rubin DM; Saunders JC
    Am J Otolaryngol; 1993; 14(3):191-8. PubMed ID: 8338202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Laser vibrometry. A middle ear and cochlear analyzer for noninvasive studies of middle and inner ear function disorders].
    Rodriguez Jorge J; Zenner HP; Hemmert W; Burkhardt C; Gummer AW
    HNO; 1997 Dec; 45(12):997-1007. PubMed ID: 9486381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductive hearing loss induced by experimental middle-ear effusion in a chinchilla model reveals impaired tympanic membrane-coupled ossicular chain movement.
    Thornton JL; Chevallier KM; Koka K; Gabbard SA; Tollin DJ
    J Assoc Res Otolaryngol; 2013 Aug; 14(4):451-64. PubMed ID: 23615802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ear-canal reflectance, umbo velocity, and tympanometry in normal-hearing adults.
    Rosowski JJ; Nakajima HH; Hamade MA; Mahfoud L; Merchant GR; Halpin CF; Merchant SN
    Ear Hear; 2012; 33(1):19-34. PubMed ID: 21857517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of increased inner ear pressure on middle ear mechanics.
    Murakami S; Gyo K; Goode RL
    Otolaryngol Head Neck Surg; 1998 May; 118(5):703-8. PubMed ID: 9591878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sound pressure gain produced by the human middle ear.
    Kurokawa H; Goode RL
    Otolaryngol Head Neck Surg; 1995 Oct; 113(4):349-55. PubMed ID: 7567003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of healed tympanic membrane perforations on umbo velocity in the rat.
    Bigelow DC; Kay D; Saunders JC
    Ann Otol Rhinol Laryngol; 1998 Nov; 107(11 Pt 1):928-34. PubMed ID: 9823841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of middle ear pressure changes on umbo vibration.
    Gyo K; Goode RL
    Auris Nasus Larynx; 1987; 14(3):131-7. PubMed ID: 3451732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoration of middle-ear input in fluid-filled middle ears by controlled introduction of air or a novel air-filled implant.
    Ravicz ME; Chien WW; Rosowski JJ
    Hear Res; 2015 Oct; 328():8-23. PubMed ID: 26121946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forward and reverse transfer functions of the middle ear based on pressure and velocity DPOAEs with implications for differential hearing diagnosis.
    Dalhoff E; Turcanu D; Gummer AW
    Hear Res; 2011 Oct; 280(1-2):86-99. PubMed ID: 21624450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurements of the acoustic input impedance of cat ears: 10 Hz to 20 kHz.
    Lynch TJ; Peake WT; Rosowski JJ
    J Acoust Soc Am; 1994 Oct; 96(4):2184-209. PubMed ID: 7963032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Middle ear development. I: Extra-stapedius response in the neonatal chick.
    Cohen YE; Rubin DM; Saunders JC
    Hear Res; 1992 Feb; 58(1):1-8. PubMed ID: 1559899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation of the POU-domain gene Brn4/Pou3f4 affects middle-ear sound conduction in the mouse.
    Samadi DS; Saunders JC; Crenshaw EB
    Hear Res; 2005 Jan; 199(1-2):11-21. PubMed ID: 15574296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors contributing to bone conduction: the outer ear.
    Stenfelt S; Wild T; Hato N; Goode RL
    J Acoust Soc Am; 2003 Feb; 113(2):902-13. PubMed ID: 12597184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay.
    Puria S; Allen JB
    J Acoust Soc Am; 1998 Dec; 104(6):3463-81. PubMed ID: 9857506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional changes in the aging mouse middle ear.
    Doan DE; Erulkar JS; Saunders JC
    Hear Res; 1996 Aug; 97(1-2):174-7. PubMed ID: 8844197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A normative study of tympanic membrane motion in humans using a laser Doppler vibrometer (LDV).
    Whittemore KR; Merchant SN; Poon BB; Rosowski JJ
    Hear Res; 2004 Jan; 187(1-2):85-104. PubMed ID: 14698090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.