These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1117 related articles for article (PubMed ID: 8151708)

  • 21. De novo design of a model peptide sequence to examine the effects of single amino acid substitutions in the hydrophobic core on both stability and oligomerization state of coiled-coils.
    Wagschal K; Tripet B; Hodges RS
    J Mol Biol; 1999 Jan; 285(2):785-803. PubMed ID: 9878444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intramolecular charge interactions as a tool to control the coiled-coil-to-amyloid transformation.
    Pagel K; Wagner SC; Rezaei Araghi R; von Berlepsch H; Böttcher C; Koksch B
    Chemistry; 2008; 14(36):11442-51. PubMed ID: 19016556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of alpha-helical coiled-coil dimer formation by spin-labeled synthetic peptides: a model parallel coiled-coil peptide and the antiparallel coiled coil formed by a replica of the ProP C-terminus.
    Hillar A; Tripet B; Zoetewey D; Wood JM; Hodges RS; Boggs JM
    Biochemistry; 2003 Dec; 42(51):15170-8. PubMed ID: 14690427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The net energetic contribution of interhelical electrostatic attractions to coiled-coil stability.
    Zhou NE; Kay CM; Hodges RS
    Protein Eng; 1994 Nov; 7(11):1365-72. PubMed ID: 7700868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering of the hydrophobic core of an alpha-helical coiled coil.
    Kiyokawa T; Kanaori K; Tajima K; Tanaka T
    Biopolymers; 2000; 55(5):407-14. PubMed ID: 11241216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ion pairs significantly stabilize coiled-coils in the absence of electrolyte.
    Yu Y; Monera OD; Hodges RS; Privalov PL
    J Mol Biol; 1996 Jan; 255(3):367-72. PubMed ID: 8568882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of protonation and metal chelation preferences in defining the properties of mercury-binding coiled coils.
    Dieckmann GR; McRorie DK; Lear JD; Sharp KA; DeGrado WF; Pecoraro VL
    J Mol Biol; 1998 Jul; 280(5):897-912. PubMed ID: 9671558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Core residue replacements cause coiled-coil orientation switching in vitro and in vivo: structure-function correlations for osmosensory transporter ProP.
    Tsatskis Y; Kwok SC; Becker E; Gill C; Smith MN; Keates RA; Hodges RS; Wood JM
    Biochemistry; 2008 Jan; 47(1):60-72. PubMed ID: 18076193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective chain recognition in the C-terminal alpha-helical coiled-coil region of laminin.
    Kammerer RA; Antonsson P; Schulthess T; Fauser C; Engel J
    J Mol Biol; 1995 Jun; 250(1):64-73. PubMed ID: 7602597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrostatic interactions control the parallel and antiparallel orientation of alpha-helical chains in two-stranded alpha-helical coiled-coils.
    Monera OD; Kay CM; Hodges RS
    Biochemistry; 1994 Apr; 33(13):3862-71. PubMed ID: 8142389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ionic interactions in the coiled-coil domain of laminin determine the specificity of chain assembly.
    Beck K; Dixon TW; Engel J; Parry DA
    J Mol Biol; 1993 May; 231(2):311-23. PubMed ID: 8510149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A parallel coiled-coil tetramer with offset helices.
    Liu J; Deng Y; Zheng Q; Cheng CS; Kallenbach NR; Lu M
    Biochemistry; 2006 Dec; 45(51):15224-31. PubMed ID: 17176044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural stability of short subsequences of the tropomyosin chain.
    Holtzer ME; Crimmins DL; Holtzer A
    Biopolymers; 1995 Jan; 35(1):125-36. PubMed ID: 7696553
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A distinct 14 residue site triggers coiled-coil formation in cortexillin I.
    Steinmetz MO; Stock A; Schulthess T; Landwehr R; Lustig A; Faix J; Gerisch G; Aebi U; Kammerer RA
    EMBO J; 1998 Apr; 17(7):1883-91. PubMed ID: 9524112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Positional dependence of the effects of negatively charged Glu side chains on the stability of two-stranded alpha-helical coiled-coils.
    Kohn WD; Kay CM; Hodges RS
    J Pept Sci; 1997; 3(3):209-23. PubMed ID: 9230486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Packing and hydrophobicity effects on protein folding and stability: effects of beta-branched amino acids, valine and isoleucine, on the formation and stability of two-stranded alpha-helical coiled coils/leucine zippers.
    Zhu BY; Zhou NE; Kay CM; Hodges RS
    Protein Sci; 1993 Mar; 2(3):383-94. PubMed ID: 8453376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the energetic contribution of interhelical Coulombic interactions for coiled coil helix orientation specificity.
    McClain DL; Binfet JP; Oakley MG
    J Mol Biol; 2001 Oct; 313(2):371-83. PubMed ID: 11800563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Folding of a three-stranded coiled coil.
    Dürr E; Bosshard HR
    Protein Sci; 2000 Jul; 9(7):1410-5. PubMed ID: 10933510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of the buried glutamate in the alpha-helical coiled coil domain of the macrophage scavenger receptor.
    Suzuki K; Yamada T; Tanaka T
    Biochemistry; 1999 Feb; 38(6):1751-6. PubMed ID: 10026254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of preferred binding domains on peptide retention behavior in reversed-phase chromatography: amphipathic alpha-helices.
    Zhou NE; Mant CT; Hodges RS
    Pept Res; 1990; 3(1):8-20. PubMed ID: 2134049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 56.