These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 8151716)

  • 1. P-type ATPases of eukaryotes and bacteria: sequence analyses and construction of phylogenetic trees.
    Fagan MJ; Saier MH
    J Mol Evol; 1994 Jan; 38(1):57-99. PubMed ID: 8151716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The p-type ATPase superfamily.
    Chan H; Babayan V; Blyumin E; Gandhi C; Hak K; Harake D; Kumar K; Lee P; Li TT; Liu HY; Lo TC; Meyer CJ; Stanford S; Zamora KS; Saier MH
    J Mol Microbiol Biotechnol; 2010; 19(1-2):5-104. PubMed ID: 20962537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps.
    Møller AB; Asp T; Holm PB; Palmgren MG
    Mol Phylogenet Evol; 2008 Feb; 46(2):619-34. PubMed ID: 18155930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic analyses of the homologous transmembrane channel-forming proteins of the F0F1-ATPases of bacteria, chloroplasts and mitochondria.
    Blair A; Ngo L; Park J; Paulsen IT; Saier MH
    Microbiology (Reading); 1996 Jan; 142 ( Pt 1)():17-32. PubMed ID: 8581162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning of a P-type ATPase gene from the cyanobacterium Synechocystis sp. PCC 6803. Homology to eukaryotic Ca(2+)-ATPases.
    Geisler M; Richter J; Schumann J
    J Mol Biol; 1993 Dec; 234(4):1284-9. PubMed ID: 8263933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural divergence between the two subgroups of P5 ATPases.
    Sørensen DM; Buch-Pedersen MJ; Palmgren MG
    Biochim Biophys Acta; 2010; 1797(6-7):846-55. PubMed ID: 20416272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary history and higher order classification of AAA+ ATPases.
    Iyer LM; Leipe DD; Koonin EV; Aravind L
    J Struct Biol; 2004; 146(1-2):11-31. PubMed ID: 15037234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure and function of heavy metal transport P1B-ATPases.
    Argüello JM; Eren E; González-Guerrero M
    Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary relationships among the permease proteins of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Construction of phylogenetic trees and possible relatedness to proteins of eukaryotic mitochondria.
    Reizer A; Pao GM; Saier MH
    J Mol Evol; 1991 Aug; 33(2):179-93. PubMed ID: 1920454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane topology of a P-type ATPase. The MgtB magnesium transport protein of Salmonella typhimurium.
    Smith DL; Tao T; Maguire ME
    J Biol Chem; 1993 Oct; 268(30):22469-79. PubMed ID: 8226755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging.
    Iyer LM; Makarova KS; Koonin EV; Aravind L
    Nucleic Acids Res; 2004; 32(17):5260-79. PubMed ID: 15466593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic analysis of the triterpene cyclase protein family in prokaryotes and eukaryotes suggests bidirectional lateral gene transfer.
    Frickey T; Kannenberg E
    Environ Microbiol; 2009 May; 11(5):1224-41. PubMed ID: 19207562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular evolution of H+-ATPases. I. Methanococcus and Sulfolobus are monophyletic with respect to eukaryotes and Eubacteria.
    Gogarten JP; Rausch T; Bernasconi P; Kibak H; Taiz L
    Z Naturforsch C J Biosci; 1989; 44(7-8):641-50. PubMed ID: 2528356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer.
    Leipe DD; Koonin EV; Aravind L
    J Mol Biol; 2004 Oct; 343(1):1-28. PubMed ID: 15381417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution and a revised nomenclature of P4 ATPases, a eukaryotic family of lipid flippases.
    Palmgren M; Østerberg JT; Nintemann SJ; Poulsen LR; López-Marqués RL
    Biochim Biophys Acta Biomembr; 2019 Jun; 1861(6):1135-1151. PubMed ID: 30802428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmembrane segments of the P-type cation-transporting ATPases. A comparative study.
    Nakamoto RK; Rao R; Slayman CW
    Ann N Y Acad Sci; 1989; 574():165-79. PubMed ID: 2561319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining divergence times of the major kingdoms of living organisms with a protein clock.
    Doolittle RF; Feng DF; Tsang S; Cho G; Little E
    Science; 1996 Jan; 271(5248):470-7. PubMed ID: 8560259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evolution before the origin of species.
    Davis BK
    Prog Biophys Mol Biol; 2002; 79(1-3):77-133. PubMed ID: 12225777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of P-type transporting ATPases and chromosomal locations of their genes.
    Maeda M; Hamano K; Hirano Y; Suzuki M; Takahashi E; Terada T; Futai M; Sato R
    Cell Struct Funct; 1998 Dec; 23(6):315-23. PubMed ID: 10206733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases.
    Argüello JM
    J Membr Biol; 2003 Sep; 195(2):93-108. PubMed ID: 14692449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.