These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 8151716)

  • 41. MgtA and MgtB: prokaryotic P-type ATPases that mediate Mg2+ influx.
    Maguire ME
    J Bioenerg Biomembr; 1992 Jun; 24(3):319-28. PubMed ID: 1328179
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Response regulators of bacterial signal transduction systems: selective domain shuffling during evolution.
    Pao GM; Saier MH
    J Mol Evol; 1995 Feb; 40(2):136-54. PubMed ID: 7699720
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel p-type ATPases mediate high-affinity potassium or sodium uptake in fungi.
    Benito B; Garciadeblás B; Schreier P; Rodríguez-Navarro A
    Eukaryot Cell; 2004 Apr; 3(2):359-68. PubMed ID: 15075266
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conserved domains and evolution of secreted phospholipases A(2).
    Nevalainen TJ; Cardoso JC; Riikonen PT
    FEBS J; 2012 Feb; 279(4):636-49. PubMed ID: 22177112
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of microorganisms by PCR amplification and sequencing of a universal amplified ribosomal region present in both prokaryotes and eukaryotes.
    Rivas R; Velázquez E; Zurdo-Piñeiro JL; Mateos PF; Martínez Molina E
    J Microbiol Methods; 2004 Mar; 56(3):413-26. PubMed ID: 14967233
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cloning of a new cation ATPase from Plasmodium falciparum: conservation of critical amino acids involved in calcium binding in mammalian organellar Ca(2+)-ATPases.
    Trottein F; Thompson J; Cowman AF
    Gene; 1995 May; 158(1):133-7. PubMed ID: 7789797
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase.
    Nucifora G; Chu L; Misra TK; Silver S
    Proc Natl Acad Sci U S A; 1989 May; 86(10):3544-8. PubMed ID: 2524829
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism of proton pumping by plant plasma membrane H+-ATPase: role of residues in transmembrane segments 5 and 6.
    Palmgren MG; Buch-Pedersen MJ; Møller AL
    Ann N Y Acad Sci; 2003 Apr; 986():188-97. PubMed ID: 12763795
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular evolution of proteasomes.
    Volker C; Lupas AN
    Curr Top Microbiol Immunol; 2002; 268():1-22. PubMed ID: 12083003
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cloning of a cDNA encoding a putative metal-transporting P-type ATPase from Arabidopsis thaliana.
    Tabata K; Kashiwagi S; Mori H; Ueguchi C; Mizuno T
    Biochim Biophys Acta; 1997 May; 1326(1):1-6. PubMed ID: 9188794
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes.
    Gupta RS
    FEMS Microbiol Rev; 2000 Oct; 24(4):367-402. PubMed ID: 10978543
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasmid and chromosome partitioning: surprises from phylogeny.
    Gerdes K; Møller-Jensen J; Bugge Jensen R
    Mol Microbiol; 2000 Aug; 37(3):455-66. PubMed ID: 10931339
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A gene encoding the 16-kDa proteolipid subunit of Enterococcus hirae Na(+)-ATPase complex.
    Kakinuma Y; Kakinuma S; Takase K; Konishi K; Igarashi K; Yamato I
    Biochem Biophys Res Commun; 1993 Sep; 195(2):1063-9. PubMed ID: 8373385
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification and analysis of 21 novel disease-causing amino acid substitutions in the conserved part of ATP7A.
    Møller LB; Bukrinsky JT; Mølgaard A; Paulsen M; Lund C; Tümer Z; Larsen S; Horn N
    Hum Mutat; 2005 Aug; 26(2):84-93. PubMed ID: 15981243
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural aspects of the gastric H,K ATPase.
    Shin JM; Besancon M; Bamberg K; Sachs G
    Ann N Y Acad Sci; 1997 Nov; 834():65-76. PubMed ID: 9405786
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Human Menkes X-chromosome disease and the staphylococcal cadmium-resistance ATPase: a remarkable similarity in protein sequences.
    Silver S; Nucifora G; Phung LT
    Mol Microbiol; 1993 Oct; 10(1):7-12. PubMed ID: 7968520
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications.
    Brown JR; Doolittle WF
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2441-5. PubMed ID: 7708661
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Energy transduction and kinetic regulation by the peptide segment connecting phosphorylation and cation binding domains in transport ATPases.
    Garnett C; Sumbilla C; Belda FF; Chen L; Inesi G
    Biochemistry; 1996 Aug; 35(34):11019-25. PubMed ID: 8780503
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships.
    Kuan J; Saier MH
    Crit Rev Biochem Mol Biol; 1993; 28(3):209-33. PubMed ID: 8325039
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sodium, potassium-atpases in algae and oomycetes.
    Barrero-Gil J; Garciadeblás B; Benito B
    J Bioenerg Biomembr; 2005 Aug; 37(4):269-78. PubMed ID: 16167182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.