BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 8151791)

  • 1. Identification of a region of a murine leukemia virus long terminal repeat with novel transcriptional regulatory activities.
    Chen H; Yoshimura FK
    J Virol; 1994 May; 68(5):3308-16. PubMed ID: 8151791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the LTR region between the enhancer and promoter in mink cell focus-forming murine leukemia virus pathogenesis.
    Yoshimura FK; Wang T
    Virology; 2001 Apr; 283(1):121-31. PubMed ID: 11312668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Duplication of U3 sequences in the long terminal repeat of mink cell focus-inducing viruses generates redundancies of transcription factor binding sites important for the induction of thymomas.
    DiFronzo NL; Frieder M; Loiler SA; Pham QN; Holland CA
    J Virol; 2003 Mar; 77(5):3326-33. PubMed ID: 12584358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to transcriptional activity and to viral leukemogenicity made by sequences within and downstream of the MCF13 murine leukemia virus enhancer.
    Tupper JC; Chen H; Hays EF; Bristol GC; Yoshimura FK
    J Virol; 1992 Dec; 66(12):7080-8. PubMed ID: 1331510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of nuclear protein binding to a site in the long terminal repeat of a murine leukemia virus: comparison with the NFAT complex.
    Yoshimura FK; Diem K
    J Virol; 1995 Feb; 69(2):994-1000. PubMed ID: 7815567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Escape from in vivo restriction of Moloney mink cell focus-inducing viruses driven by the Mo+PyF101 long terminal repeat (LTR) by LTR alterations.
    Brightman BK; Farmer C; Fan H
    J Virol; 1993 Dec; 67(12):7140-8. PubMed ID: 8230436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of nucleotide sequences that regulate transcription of the MCF13 murine leukemia virus long terminal repeat in activated T cells.
    Yoshimura FK; Cankovic M; Smeltz R; Ibrahim S
    J Virol; 1997 Mar; 71(3):2572-6. PubMed ID: 9032403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negative regulatory element associated with potentially functional promoter and enhancer elements in the long terminal repeats of endogenous murine leukemia virus-related proviral sequences.
    Ch'ang LY; Yang WK; Myer FE; Yang DM
    J Virol; 1989 Jun; 63(6):2746-57. PubMed ID: 2542587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence-specific and/or stereospecific constraints of the U3 enhancer elements of MCF 247-W are important for pathogenicity.
    DiFronzo NL; Holland CA
    J Virol; 1999 Jan; 73(1):234-41. PubMed ID: 9847326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping of functional regions of murine retrovirus long terminal repeat enhancers: enhancer domains interact and are not independent in their contributions to enhancer activity.
    Hollon T; Yoshimura FK
    J Virol; 1989 Aug; 63(8):3353-61. PubMed ID: 2545910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the disease potential of a recombinant retrovirus containing Friend murine leukemia virus sequences and a unique long terminal repeat from feline leukemia virus.
    Nishigaki K; Hanson C; Thompson D; Yugawa T; Hisasue M; Tsujimoto H; Ruscetti S
    J Virol; 2002 Feb; 76(3):1527-32. PubMed ID: 11773427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequences between the enhancer and promoter in the long terminal repeat affect murine leukemia virus pathogenicity and replication in the thymus.
    Yoshimura FK; Wang T; Cankovic M
    J Virol; 1999 Jun; 73(6):4890-8. PubMed ID: 10233950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long terminal repeat enhancer core sequences in proviruses adjacent to c-myc in T-cell lymphomas induced by a murine retrovirus.
    Morrison HL; Soni B; Lenz J
    J Virol; 1995 Jan; 69(1):446-55. PubMed ID: 7983741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of reversions and suppressors of a mutation in the CBF binding site of a lymphomagenic retrovirus.
    Martiney MJ; Rulli K; Beaty R; Levy LS; Lenz J
    J Virol; 1999 Sep; 73(9):7599-606. PubMed ID: 10438850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. a1/EBP: a leucine zipper protein that binds CCAAT/enhancer elements in the avian leukosis virus long terminal repeat enhancer.
    Bowers WJ; Ruddell A
    J Virol; 1992 Nov; 66(11):6578-86. PubMed ID: 1328681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spacing between the enhancer and promoter of the long terminal repeat of a murine leukaemia retrovirus is required for transcriptional activation in T cells.
    Chen H; Yoshimura FK
    J Gen Virol; 1998 May; 79 ( Pt 5)():1101-4. PubMed ID: 9603324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A protein-binding site with dyad symmetry in the long terminal repeat of the MCF13 murine leukemia virus that contributes to transcriptional activity in T lymphocytes.
    Yoshimura FK; Diem K; Chen H; Tupper J
    J Virol; 1993 Apr; 67(4):2298-304. PubMed ID: 8383242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural alterations in the long terminal repeat of an acquired mouse mammary tumor virus provirus in a T-cell leukemia of DBA/2 mice.
    Lee WT; Prakash O; Klein D; Sarkar NH
    Virology; 1987 Jul; 159(1):39-48. PubMed ID: 3037782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of proviruses integrated in Fli-1 and Evi-1 regions in Cas-Br-E MuLV-induced non-T-, non-B-cell leukemias.
    Bergeron D; Poliquin L; Houde J; Barbeau B; Rassart E
    Virology; 1992 Dec; 191(2):661-9. PubMed ID: 1448920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional interaction between retroviral long terminal repeats (LTRs): mechanism of 5' LTR suppression and 3' LTR promoter activation of c-myc in avian B-cell lymphomas.
    Boerkoel CF; Kung HJ
    J Virol; 1992 Aug; 66(8):4814-23. PubMed ID: 1321271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.