These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 815235)
1. Effect of methionine on chemotaxis by Bacillus subtilis. Ordal GW J Bacteriol; 1976 Mar; 125(3):1005-12. PubMed ID: 815235 [TBL] [Abstract][Full Text] [Related]
2. Control of tumbling in bacterial chemotaxis by divalent cation. Ordal GW J Bacteriol; 1976 May; 126(2):706-11. PubMed ID: 816789 [TBL] [Abstract][Full Text] [Related]
3. Chemotaxis away from uncouplers of oxidative phosphorylation in Bacillus subtilis. Ordal GW; Goldman DJ Science; 1975 Sep; 189(4205):802-5. PubMed ID: 808854 [TBL] [Abstract][Full Text] [Related]
4. The effect of amino acids on the motile behavior of Bacillus subtilis. de Jong MH; van der Drift C; Stumm C; Arends JJ Arch Microbiol; 1977 May; 113(1-2):153-8. PubMed ID: 407881 [TBL] [Abstract][Full Text] [Related]
5. Methyl group turnover on methyl-accepting chemotaxis proteins during chemotaxis by Bacillus subtilis. Thoelke MS; Casper JM; Ordal GW J Biol Chem; 1990 Feb; 265(4):1928-32. PubMed ID: 2105313 [TBL] [Abstract][Full Text] [Related]
6. Evidence for an intermediate methyl-acceptor for chemotaxis in Bacillus subtilis. Thoelke MS; Bedale WA; Nettleton DO; Ordal GW J Biol Chem; 1987 Feb; 262(6):2811-6. PubMed ID: 3102476 [TBL] [Abstract][Full Text] [Related]
7. Action of uncouplers of oxidative phosphorylation as chemotactic repellents of Bacillus subtilis. Ordal GW; Villani DP J Gen Microbiol; 1980 Jun; 118(2):471-8. PubMed ID: 6777455 [TBL] [Abstract][Full Text] [Related]
8. Receptors for chemotaxis in Bacillus subtilis. de Jong MH; van der Drift C; Vogels GD J Bacteriol; 1975 Sep; 123(3):824-7. PubMed ID: 808536 [TBL] [Abstract][Full Text] [Related]
9. Tumbling chemotaxis mutants of Escherichia coli: possible gene-dependent effect of methionine starvation. Kondoh H J Bacteriol; 1980 May; 142(2):527-34. PubMed ID: 6991478 [TBL] [Abstract][Full Text] [Related]
11. Histidine starvation and adenosine 5'-triphosphate depletion in chemotaxis of Salmonella typhimurium. Galloway RJ; Taylor BL J Bacteriol; 1980 Dec; 144(3):1068-75. PubMed ID: 7002904 [TBL] [Abstract][Full Text] [Related]
12. Partial derepression of the isoleucine-valine enzymes during methionine starvation is Salmonella typhimurium. Rizzino A; Mastanduno M; Freundlich M Biochim Biophys Acta; 1977 Mar; 475(2):267-75. PubMed ID: 321028 [TBL] [Abstract][Full Text] [Related]
13. Role of methionine in bacterial chemotaxis. Aswad D; Koshland DE J Bacteriol; 1974 May; 118(2):640-5. PubMed ID: 4597455 [TBL] [Abstract][Full Text] [Related]
14. Activation of the CheA kinase by asparagine in Bacillus subtilis chemotaxis. Garrity LF; Ordal GW Microbiology (Reading); 1997 Sep; 143(Pt 9):2945-2951. PubMed ID: 12094812 [TBL] [Abstract][Full Text] [Related]
15. Sensory electrophysiology of bacteria: relationship of the membrane potential to motility and chemotaxis in Bacillus subtilis. Miller JB; Koshland DE Proc Natl Acad Sci U S A; 1977 Nov; 74(11):4752-6. PubMed ID: 412194 [TBL] [Abstract][Full Text] [Related]
19. Multiplicity of isoleucine, leucine, and valine transport systems in Escherichia coli K-12. Guardiola J; De Felice M; Klopotowski T; Iaccarino M J Bacteriol; 1974 Feb; 117(2):382-92. PubMed ID: 4590464 [TBL] [Abstract][Full Text] [Related]
20. Control of the chemotactic behavior of Bacillus subtilis cells. de Jong MH; van der Drift C Arch Microbiol; 1978 Jan; 116(1):1-8. PubMed ID: 23735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]