These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 815238)

  • 61. Peptidoglycan synthesis in the absence of class A penicillin-binding proteins in Bacillus subtilis.
    McPherson DC; Popham DL
    J Bacteriol; 2003 Feb; 185(4):1423-31. PubMed ID: 12562814
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A metabolic checkpoint protein GlmR is important for diverting carbon into peptidoglycan biosynthesis in Bacillus subtilis.
    Patel V; Wu Q; Chandrangsu P; Helmann JD
    PLoS Genet; 2018 Sep; 14(9):e1007689. PubMed ID: 30248093
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Hydrogen ion control of autolysin-dependent functions in Bacillus subtilis.
    Jolliffe LK; Langemeier SO; Doyle RJ
    Microbios; 1983; 38(153-154):187-94. PubMed ID: 6139741
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Selective inhibition of extracellular enzyme synthesis by removal of cell wall from Bacillus subtilis.
    May BK; Elliott WH
    Biochim Biophys Acta; 1968 Sep; 166(2):532-7. PubMed ID: 4971402
    [No Abstract]   [Full Text] [Related]  

  • 65. Membrane synthesis in synchronous cultures of Bacillus subtilis 168.
    Sargent MG
    J Bacteriol; 1973 Oct; 116(1):397-409. PubMed ID: 4126817
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An early cytoplasmic step of peptidoglycan synthesis is associated to MreB in Bacillus subtilis.
    Rueff AS; Chastanet A; Domínguez-Escobar J; Yao Z; Yates J; Prejean MV; Delumeau O; Noirot P; Wedlich-Söldner R; Filipe SR; Carballido-López R
    Mol Microbiol; 2014 Jan; 91(2):348-62. PubMed ID: 24261876
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Peptidoglycan N-acetylglucosamine deacetylases from Bacillus cereus, highly conserved proteins in Bacillus anthracis.
    Psylinakis E; Boneca IG; Mavromatis K; Deli A; Hayhurst E; Foster SJ; Vårum KM; Bouriotis V
    J Biol Chem; 2005 Sep; 280(35):30856-63. PubMed ID: 15961396
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Peptidoglycan synthesis in L-phase variants of Bacillus licheniformis and Bacillus subtilis.
    Ward JB
    J Bacteriol; 1975 Nov; 124(2):668-78. PubMed ID: 241742
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Zymographic Techniques for the Analysis of Bacterial Cell Wall in Bacillus.
    Fukushima T; Sekiguchi J
    Methods Mol Biol; 2016; 1440():87-98. PubMed ID: 27311666
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nutritional regulation of degradation of aspartate transcarbamylase and of bulk protein in exponentially growing Bacillus subtilis cells.
    Bond RW; Field AS; Switzer RL
    J Bacteriol; 1983 Jan; 153(1):253-8. PubMed ID: 6401278
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Distribution of teichoic acid in the cell wall of Bacillus subtilis.
    Doyle RJ; McDannel ML; Helman JR; Streips UN
    J Bacteriol; 1975 Apr; 122(1):152-8. PubMed ID: 804466
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Synthesis of peptidoglycan in the form of soluble glycan chains by growing protoplasts (autoplasts) of Streptococcus faecalis.
    Rosenthal RS; Shockman GD
    J Bacteriol; 1975 Oct; 124(1):419-23. PubMed ID: 809419
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Identification of cell wall subunits in bacillus subtilis and analysis of their segregation during growth.
    Schlaeppi JM; Pooley HM; Karamata D
    J Bacteriol; 1982 Jan; 149(1):329-37. PubMed ID: 6798023
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Involvement of autolysin in cellular lysis of Bacillus subtilis induced by short- and medium-chain fatty acids.
    Tsuchido T; Hiraoka T; Takano M; Shibasaki I
    J Bacteriol; 1985 Apr; 162(1):42-6. PubMed ID: 2858469
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Localization of the vegetative cell wall hydrolases LytC, LytE, and LytF on the Bacillus subtilis cell surface and stability of these enzymes to cell wall-bound or extracellular proteases.
    Yamamoto H; Kurosawa S; Sekiguchi J
    J Bacteriol; 2003 Nov; 185(22):6666-77. PubMed ID: 14594841
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Formation of cell wall polymers by reverting protoplasts of Bacillus licheniformis.
    Elliott TS; Ward JB; Rogers HJ
    J Bacteriol; 1975 Nov; 124(2):623-32. PubMed ID: 1184574
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Control of cell length in Bacillus subtilis.
    Sargent MG
    J Bacteriol; 1975 Jul; 123(1):7-19. PubMed ID: 806582
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Bacillus subtilis N-acetylmuramic acid L-alanine amidase.
    Herbold DR; Glaser L
    J Biol Chem; 1975 Mar; 250(5):1676-82. PubMed ID: 803507
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Wall turnover deficiency of Bacillus subtilis Ni15 is due to a decrease in teichoic acid.
    Vitković L
    Can J Microbiol; 1987 Jun; 33(6):566-8. PubMed ID: 2887273
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A heat-sensitive lysis mutant of Bacillus subtilis 168 with a low activity of pyruvate carboxylase.
    Buxton RS
    J Gen Microbiol; 1978 Apr; 105(2):175-85. PubMed ID: 417147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.