These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 8152922)
1. Fluorescence energy transfer as a probe for nucleic acid structures and sequences. Mergny JL; Boutorine AS; Garestier T; Belloc F; Rougée M; Bulychev NV; Koshkin AA; Bourson J; Lebedev AV; Valeur B Nucleic Acids Res; 1994 Mar; 22(6):920-8. PubMed ID: 8152922 [TBL] [Abstract][Full Text] [Related]
2. Fluorescence energy transfer as a probe for tetraplex formation: the i-motif. Mergny JL Biochemistry; 1999 Feb; 38(5):1573-81. PubMed ID: 9931024 [TBL] [Abstract][Full Text] [Related]
3. Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer. Cardullo RA; Agrawal S; Flores C; Zamecnik PC; Wolf DE Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8790-4. PubMed ID: 3194390 [TBL] [Abstract][Full Text] [Related]
4. Fluorescence energy transfer between two triple helix-forming oligonucleotides bound to duplex DNA. Mergny JL; Garestier T; Rougée M; Lebedev AV; Chassignol M; Thuong NT; Hélène C Biochemistry; 1994 Dec; 33(51):15321-8. PubMed ID: 7803395 [TBL] [Abstract][Full Text] [Related]
5. Determination of interactions between structured nucleic acids by fluorescence resonance energy transfer (FRET): selection of target sites for functional nucleic acids. Ota N; Hirano K; Warashina M; Andrus A; Mullah B; Hatanaka K; Taira K Nucleic Acids Res; 1998 Feb; 26(3):735-43. PubMed ID: 9443965 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence resonance energy transfer analysis of ribozyme kinetics reveals the mode of action of a facilitator oligonucleotide. Perkins TA; Wolf DE; Goodchild J Biochemistry; 1996 Dec; 35(50):16370-7. PubMed ID: 8973213 [TBL] [Abstract][Full Text] [Related]
7. Sequence verification by hybridisation with fluorescent octanucleotides as a first step to a fluorescent sequencing by hybridisation protocol. Eickhoff H; Birch-Hirschfeld E; Scheef J; Hoyer C; Drexhage KH; Greulich KO J Biochem Biophys Methods; 1996 Apr; 32(1):59-68. PubMed ID: 8773548 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence resonance energy transfer as a probe for G-quartet formation by a telomeric repeat. Mergny JL; Maurizot JC Chembiochem; 2001 Feb; 2(2):124-32. PubMed ID: 11828436 [TBL] [Abstract][Full Text] [Related]
9. Kinetic studies by fluorescence resonance energy transfer employing a double-labeled oligonucleotide: hybridization to the oligonucleotide complement and to single-stranded DNA. Parkhurst KM; Parkhurst LJ Biochemistry; 1995 Jan; 34(1):285-92. PubMed ID: 7819209 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence resonance energy transfer from pyrene to perylene labels for nucleic acid hybridization assays under homogeneous solution conditions. Masuko M; Ohuchi S; Sode K; Ohtani H; Shimadzu A Nucleic Acids Res; 2000 Apr; 28(8):E34. PubMed ID: 10734211 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic characterization of fluorescein- and tetramethylrhodamine-labeled oligonucleotides and their complexes with a DNA template. Wang L; Gaigalas AK; Blasic J; Holden MJ Spectrochim Acta A Mol Biomol Spectrosc; 2004 Oct; 60(12):2741-50. PubMed ID: 15350908 [TBL] [Abstract][Full Text] [Related]
13. The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer. Ozaki H; McLaughlin LW Nucleic Acids Res; 1992 Oct; 20(19):5205-14. PubMed ID: 1408835 [TBL] [Abstract][Full Text] [Related]
14. DNA curvature in solution measured by fluorescence resonance energy transfer. Tóth K; Sauermann V; Langowski J Biochemistry; 1998 Jun; 37(22):8173-9. PubMed ID: 9609713 [TBL] [Abstract][Full Text] [Related]
15. The helix-coil transition of DNA duplexes and hairpins observed by multiple fluorescence parameters. Vámosi G; Clegg RM Biochemistry; 1998 Oct; 37(40):14300-16. PubMed ID: 9760268 [TBL] [Abstract][Full Text] [Related]
16. Distance distribution in a dye-linked oligonucleotide determined by time-resolved fluorescence energy transfer. Hochstrasser RA; Chen SM; Millar DP Biophys Chem; 1992 Dec; 45(2):133-41. PubMed ID: 1286148 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the RNase H activity by fluorescence resonance energy transfer. Miyashiro H; Kimura T; Tomiyama M; Hattori M Nucleic Acids Symp Ser; 2000; (44):55-6. PubMed ID: 12903265 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence energy transfer between fluorescein label and DNA intercalators to detect nucleic acids hybridization in homogeneous media. Talavera EM; Bermejo R; Crovetto L; Orte A; Alvarez-Pez JM Appl Spectrosc; 2003 Feb; 57(2):208-15. PubMed ID: 14610959 [TBL] [Abstract][Full Text] [Related]
19. Location of cyanine-3 on double-stranded DNA: importance for fluorescence resonance energy transfer studies. Norman DG; Grainger RJ; Uhrín D; Lilley DM Biochemistry; 2000 May; 39(21):6317-24. PubMed ID: 10828944 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence characteristics of 5-carboxytetramethylrhodamine linked covalently to the 5' end of oligonucleotides: multiple conformers of single-stranded and double-stranded dye-DNA complexes. Vámosi G; Gohlke C; Clegg RM Biophys J; 1996 Aug; 71(2):972-94. PubMed ID: 8842236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]