BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8154277)

  • 1. Effects of polymerization heat and monomers from acrylic cement on canine bone.
    Stürup J; Nimb L; Kramhøft M; Jensen JS
    Acta Orthop Scand; 1994 Feb; 65(1):20-3. PubMed ID: 8154277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood perfusion and remodelling activity in canine tibial diaphysis after filling with a new bone cement compared to bone wax and poly(methyl methacrylate) cement.
    Stürup J; Nimb L; Jensen JS
    Biomaterials; 1995 Jul; 16(11):845-8. PubMed ID: 8527599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect on cortical bone of reaming and filling of canine tibial diaphysis with inert bone wax.
    Stürup J; Nimb L; Jensen JS
    Acta Orthop Belg; 1992; 58(4):388-94. PubMed ID: 1485500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved cortical histology after cementation with a new MMA-DMA-IBMA bone cement: an animal study.
    Nimb L; Stürup J; Jensen JS
    J Biomed Mater Res; 1993 May; 27(5):565-74. PubMed ID: 8314809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation of cortical hypertrophy depending on the medullary filling material. An experimental study of canine tibial diaphysis.
    Kramhøft M; Bødtker S; Nimb L; Jensen JS
    J Arthroplasty; 1993 Oct; 8(5):555-60. PubMed ID: 8246002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased blood perfusion in canine tibial diaphysis after filling with acrylic bone cement compared with inert bone wax.
    Stürup J; Madsen J; Tøndevold E; Jensen JS
    Acta Orthop Scand; 1990 Apr; 61(2):143-7. PubMed ID: 2360432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consideration of physical parameters to predict thermal necrosis in acrylic cement implants at the site of giant cell tumors of bone.
    Nelson CG; Krishnan EC; Neff JR
    Med Phys; 1986; 13(4):462-8. PubMed ID: 3736503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of polymethylmethacrylate on bone: an experimental study.
    Goodman SB; Schatzker J; Sumner-Smith G; Fornasier VL; Goften N; Hunt C
    Arch Orthop Trauma Surg (1978); 1985; 104(3):150-4. PubMed ID: 3904668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat generation and heat protection in methylmethacrylate cementation of vertebral bodies. A cadaver study evaluating different clinical possibilities of dural protection from heat during cement curing.
    Toksvig-Larsen S; Johnsson R; Strömqvist B
    Eur Spine J; 1995; 4(1):15-7. PubMed ID: 7749900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Toxicity of bone cement components].
    Bösch CP; Harms H; Lintner F
    Aktuelle Probl Chir Orthop; 1987; 31():87-9. PubMed ID: 2888411
    [No Abstract]   [Full Text] [Related]  

  • 11. Cardiovascular effects of methylmethacrylate cement.
    Peebles DJ; Ellis RH; Stride SD; Simpson BR
    Br Med J; 1972 Feb; 1(5796):349-51. PubMed ID: 5008662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal effects of polymerization of methyl-methacrylate on small tubular bones.
    Schultz RJ; Johnston AD; Krishnamurthy S
    Int Orthop; 1987; 11(3):277-82. PubMed ID: 3623767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loosening of the cemented hip prosthesis. The importance of heat injury.
    Mjöberg B
    Acta Orthop Scand Suppl; 1986; 221():1-40. PubMed ID: 3468743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histological evaluation of cortical bone reaction to PMMA cement.
    Jensen LN; Stürup J; Kramhøft M; Jensen JS
    Acta Orthop Belg; 1991; 57(3):254-9. PubMed ID: 1950508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Pharmacologic effects and kinetics of methylmethacrylate monomers].
    Wenda K; Grieben A; Rudigier J; Scheuermann H
    Aktuelle Probl Chir Orthop; 1987; 31():83-6. PubMed ID: 2888410
    [No Abstract]   [Full Text] [Related]  

  • 16. Studies of skeletal tracer kinetics. III. Tc-99m(Sn)methylenediphosphonate uptake in the canine tibia as a function of blood flow.
    Sagar VV; Piccone JM; Charkes ND
    J Nucl Med; 1979 Dec; 20(12):1257-61. PubMed ID: 536792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of heating from an acrylic implant in bone.
    Peng L; Nelson DA
    Biomed Sci Instrum; 1991; 27():253-61. PubMed ID: 2065163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of new bone cement utilizing low toxicity monomers.
    Ono S; Kadoma Y; Morita S; Takakuda K
    J Med Dent Sci; 2008 Jun; 55(2):189-96. PubMed ID: 19697507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of intrusion characteristics of low viscosity cement Simplex-P and Palacos cements in a bovine cancellous bone model.
    Rey RM; Paiement GD; McGann WM; Jasty M; Harrigan TP; Burke DW; Harris WH
    Clin Orthop Relat Res; 1987 Feb; (215):272-8. PubMed ID: 3802646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical assessment of a new adhesive bone cement for otologic surgery.
    Werning JW; Maniglia AJ; Anderson JM
    Am J Otol; 1995 May; 16(3):269-76. PubMed ID: 8588618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.