These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Analysis of the acid and alkaline dissociation of earthworm hemoglobin, Lumbricus terrestris, by front-face fluorescence spectroscopy. Harrington JP; Hirsch RE Biochim Biophys Acta; 1991 Feb; 1076(3):351-8. PubMed ID: 2001383 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence and circular dichroism studies on the accessibility of tryptophan residues and unfolding of a jacalin-related α-d-galactose-specific lectin from mulberry (Morus indica). Datta D; J Swamy M J Photochem Photobiol B; 2017 May; 170():108-117. PubMed ID: 28414980 [TBL] [Abstract][Full Text] [Related]
4. Interaction of tryptophan residues of cytochrome P450scc with a highly specific fluorescence quencher, a substrate analogue, compared to acrylamide and iodide. Lange R; Anzenbacher P; Müller S; Maurin L; Balny C Eur J Biochem; 1994 Dec; 226(3):963-70. PubMed ID: 7813487 [TBL] [Abstract][Full Text] [Related]
5. Acrylamide and oxygen fluorescence quenching studies with liver alcohol dehydrogenase using steady-state and phase fluorometry. Eftink MR; Jameson DM Biochemistry; 1982 Aug; 21(18):4443-9. PubMed ID: 6751389 [TBL] [Abstract][Full Text] [Related]
6. Intrinsic tryptophan fluorescence of Schizosaccharomyces pombe mitochondrial F1-ATPase. A powerful probe for phosphate and nucleotide interactions. Divita G; Di Pietro A; Deléage G; Roux B; Gautheron DC Biochemistry; 1991 Apr; 30(13):3256-62. PubMed ID: 1826214 [TBL] [Abstract][Full Text] [Related]
7. Accessibility of tryptophan residues in Na,K-ATPase. Tyson PA; Steinberg M J Biol Chem; 1987 Apr; 262(10):4644-8. PubMed ID: 3031029 [TBL] [Abstract][Full Text] [Related]
8. Molecular shape, dissociation, and oxygen binding of the dodecamer subunit of Lumbricus terrestris hemoglobin. Krebs A; Kuchumov AR; Sharma PK; Braswell EH; Zipper P; Weber RE; Chottard G; Vinogradov SN J Biol Chem; 1996 Aug; 271(31):18695-704. PubMed ID: 8702524 [TBL] [Abstract][Full Text] [Related]
9. A study of the quenching of the intrinsic fluorescence of succinyl-CoA synthetase from Escherichia coli by acrylamide, iodide, and coenzyme A. Prasad AR; Nishimura JS; Horowitz PM Biochemistry; 1983 Aug; 22(18):4272-5. PubMed ID: 6354251 [TBL] [Abstract][Full Text] [Related]
10. Time-resolved fluorescence studies of genetically engineered Escherichia coli glutamine synthetase. Effects of ATP on the tryptophan-57 loop. Atkins WM; Stayton PS; Villafranca JJ Biochemistry; 1991 Apr; 30(14):3406-16. PubMed ID: 1672820 [TBL] [Abstract][Full Text] [Related]
11. Kinetic light scattering studies on the dissociation of hemoglobin from Lumbricus terrestris. Goss DJ; Parkhurst LJ; Görisch H Biochemistry; 1975 Dec; 14(25):5461-4. PubMed ID: 56 [TBL] [Abstract][Full Text] [Related]
12. A photoreversible conformational change in 124 kDa Avena phytochrome. Singh BR; Chai YG; Song PS; Lee J; Robinson GW Biochim Biophys Acta; 1988 Dec; 936(3):395-405. PubMed ID: 3196711 [TBL] [Abstract][Full Text] [Related]
13. Intrinsic fluorescence of the P-glycoprotein multidrug transporter: sensitivity of tryptophan residues to binding of drugs and nucleotides. Liu R; Siemiarczuk A; Sharom FJ Biochemistry; 2000 Dec; 39(48):14927-38. PubMed ID: 11101309 [TBL] [Abstract][Full Text] [Related]
14. A molecular model for the d chain of the giant haemoglobin from Lumbricus terrestris and its implications for subunit assembly. Viana E; da Silva CH; Tabak M; Imasato H; Garratt R Biochim Biophys Acta; 1998 Mar; 1383(1):130-42. PubMed ID: 9546054 [TBL] [Abstract][Full Text] [Related]
15. Rates of energy transfer between tryptophans and hemes in hemoglobin, assuming that the heme is a planar oscillator. Gryczynski Z; Tenenholz T; Bucci E Biophys J; 1992 Sep; 63(3):648-53. PubMed ID: 1420905 [TBL] [Abstract][Full Text] [Related]
16. Effects of glucose and magnesium ion on the quenching of yeast hexokinase fluorescence by acrylamide. Feldman I; Norton GE Biochim Biophys Acta; 1980 Sep; 615(1):132-42. PubMed ID: 7000190 [TBL] [Abstract][Full Text] [Related]
17. Distance-dependent fluorescence quenching of tryptophan by acrylamide. Lakowicz JR; Zelent B; Gryczynski I; Kuśba J; Johnson ML Photochem Photobiol; 1994 Sep; 60(3):205-14. PubMed ID: 7972370 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence properties of tryptophan residues in the monomeric d-chain of Glossoscolex paulistus hemoglobin: an interpretation based on a comparative molecular model. Bosch Cabral C; Imasato H; Rosa JC; Laure HJ; da Silva CH; Tabak M; Garratt RC; Greene LJ Biophys Chem; 2002 Jun; 97(2-3):139-57. PubMed ID: 12050006 [TBL] [Abstract][Full Text] [Related]
19. Tryptophan exposure in various conformational isomers of bovine prothrombin fragment 1. An acrylamide quenching study. Marsh HC; George EM; Koehler KA; Hiskey RG Biochim Biophys Acta; 1981 Jan; 667(1):35-43. PubMed ID: 6894253 [TBL] [Abstract][Full Text] [Related]
20. A dodecamer of globin chains is the principal functional subunit of the extracellular hemoglobin of Lumbricus terrestris. Vinogradov SN; Sharma PK; Qabar AN; Wall JS; Westrick JA; Simmons JH; Gill SJ J Biol Chem; 1991 Jul; 266(20):13091-6. PubMed ID: 2071593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]