These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 8156623)

  • 1. ATP-sensitive K+ channels mediate dilatation of cerebral arterioles during hypoxia.
    Taguchi H; Heistad DD; Kitazono T; Faraci FM
    Circ Res; 1994 May; 74(5):1005-8. PubMed ID: 8156623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ischemia on cerebral arteriolar dilation to arterial hypoxia in piglets.
    Bari F; Louis TM; Busija DW
    Stroke; 1998 Jan; 29(1):222-7; discussion 227-8. PubMed ID: 9445354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diabetes mellitus impairs vasodilation to hypoxia in human coronary arterioles: reduced activity of ATP-sensitive potassium channels.
    Miura H; Wachtel RE; Loberiza FR; Saito T; Miura M; Nicolosi AC; Gutterman DD
    Circ Res; 2003 Feb; 92(2):151-8. PubMed ID: 12574142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dilatation of cerebral arterioles in response to activation of adenylate cyclase is dependent on activation of Ca(2+)-dependent K+ channels.
    Taguchi H; Heistad DD; Kitazono T; Faraci FM
    Circ Res; 1995 Jun; 76(6):1057-62. PubMed ID: 7758160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral vasodilation during hypercapnia. Role of glibenclamide-sensitive potassium channels and nitric oxide.
    Faraci FM; Breese KR; Heistad DD
    Stroke; 1994 Aug; 25(8):1679-83. PubMed ID: 8042220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global ischemia impairs ATP-sensitive K+ channel function in cerebral arterioles in piglets.
    Bari F; Louis TM; Meng W; Busija DW
    Stroke; 1996 Oct; 27(10):1874-80; discussion 1880-1. PubMed ID: 8841347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-sensitive potassium channels in the basilar artery during chronic hypertension.
    Kitazono T; Heistad DD; Faraci FM
    Hypertension; 1993 Nov; 22(5):677-81. PubMed ID: 8225527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of cerebral arterioles in diabetic rats to activation of ATP-sensitive potassium channels.
    Mayhan WG; Faraci FM
    Am J Physiol; 1993 Jul; 265(1 Pt 2):H152-7. PubMed ID: 8342628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Ca(2+)-dependent K+ channels in cerebral vasodilatation induced by increases in cyclic GMP and cyclic AMP in the rat.
    PaternĂ² R; Faraci FM; Heistad DD
    Stroke; 1996 Sep; 27(9):1603-7; discussion 1607-8. PubMed ID: 8784136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of cerebral arterioles to N-methyl-D-aspartate and activation of ATP-sensitive potassium channels in old rats.
    Faraci FM; Heistad DD
    Brain Res; 1994 Aug; 654(2):349-51. PubMed ID: 7987685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of ATP-sensitive potassium channels in the basilar artery.
    Faraci FM; Heistad DD
    Am J Physiol; 1993 Jan; 264(1 Pt 2):H8-13. PubMed ID: 8430866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effects of protein kinase C on inwardly rectifying K+- and ATP-sensitive K+ channel-mediated responses of the basilar artery.
    Chrissobolis S; Sobey CG
    Stroke; 2002 Jun; 33(6):1692-7. PubMed ID: 12053013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoflurane and sevoflurane induce vasodilation of cerebral vessels via ATP-sensitive K+ channel activation.
    Iida H; Ohata H; Iida M; Watanabe Y; Dohi S
    Anesthesiology; 1998 Oct; 89(4):954-60. PubMed ID: 9778013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of adrenomedullin-induced dilatation of cerebral arterioles.
    Lang MG; PaternĂ² R; Faraci FM; Heistad DD
    Stroke; 1997 Jan; 28(1):181-5. PubMed ID: 8996509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia inhibits myogenic reactivity of renal afferent arterioles by activating ATP-sensitive K+ channels.
    Loutzenhiser RD; Parker MJ
    Circ Res; 1994 May; 74(5):861-9. PubMed ID: 8156633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo reactivity of resistance arterioles to activation of ATP-sensitive K+ channels.
    Mayhan WG
    Eur J Pharmacol; 1993 Sep; 242(1):109-12. PubMed ID: 8223932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cAMP-independent dilation of coronary arterioles to adenosine : role of nitric oxide, G proteins, and K(ATP) channels.
    Hein TW; Kuo L
    Circ Res; 1999 Oct; 85(7):634-42. PubMed ID: 10506488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of subarachnoid hemorrhage on cerebral vasodilatation in response to activation of ATP-sensitive K+ channels in chronically hypertensive rats.
    Sobey CG; Heistad DD; Faraci FM
    Stroke; 1997 Feb; 28(2):392-6; discussion 396-7. PubMed ID: 9040696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of nitric oxide, cyclic nucleotides, and the activation of ATP-sensitive K+ channels in the contribution of adenosine to hypoxia-induced pial artery dilation.
    Armstead WM
    J Cereb Blood Flow Metab; 1997 Jan; 17(1):100-8. PubMed ID: 8978392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A link between adenosine, ATP-sensitive K+ channels, potassium and muscle vasodilatation in the rat in systemic hypoxia.
    Marshall JM; Thomas T; Turner L
    J Physiol; 1993 Dec; 472():1-9. PubMed ID: 8145135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.