BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8156630)

  • 1. Lactate transport in mammalian ventricle. General properties and relation to K+ fluxes.
    Shieh RC; Goldhaber JI; Stuart JS; Weiss JN
    Circ Res; 1994 May; 74(5):829-38. PubMed ID: 8156630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of the sarcolemmal lactate carrier in single heart cells using BCECF to measure pHi.
    Wang X; Levi AJ; Halestrap AP
    Am J Physiol; 1994 Nov; 267(5 Pt 2):H1759-69. PubMed ID: 7977806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium loss during myocardial ischaemia and hypoxia: does lactate efflux play a role?
    Weiss JN; Shieh RC
    Cardiovasc Res; 1994 Aug; 28(8):1125-32. PubMed ID: 7954613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of the lactate carrier from rat skeletal-muscle sarcolemma.
    Wibrand F; Juel C
    Biochem J; 1994 Apr; 299 ( Pt 2)(Pt 2):533-7. PubMed ID: 8172615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a lactate transport system in the sarcolemmal membrane of the perfused rabbit heart: kinetics of unidirectional influx, carrier specificity and effects of glucagon.
    Mann GE; Zlokovic BV; Yudilevich DL
    Biochim Biophys Acta; 1985 Oct; 819(2):241-8. PubMed ID: 4041458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactate transport is mediated by a membrane-bound carrier in rat skeletal muscle sarcolemmal vesicles.
    Roth DA; Brooks GA
    Arch Biochem Biophys; 1990 Jun; 279(2):377-85. PubMed ID: 2350184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of pHi recovery after global ischemia in the perfused heart.
    Vandenberg JI; Metcalfe JC; Grace AA
    Circ Res; 1993 May; 72(5):993-1003. PubMed ID: 8386598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of ATP sensitive potassium channel of isolated guinea pig ventricular myocytes by sarcolemmal monocarboxylate transport.
    Coetzee WA
    Cardiovasc Res; 1992 Nov; 26(11):1077-86. PubMed ID: 1291085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for an electrogenic Na+-HCO3- symport in rat cardiac myocytes.
    Aiello EA; Petroff MG; Mattiazzi AR; Cingolani HE
    J Physiol; 1998 Oct; 512 ( Pt 1)(Pt 1):137-48. PubMed ID: 9729624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sarcolemmal mechanisms for pHi recovery from alkalosis in the guinea-pig ventricular myocyte.
    Leem CH; Vaughan-Jones RD
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):487-96. PubMed ID: 9575297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osmotic changes and transsarcolemmal ion transport during total ischaemia of isolated rat ventricular myocytes.
    Fiolet JW; Schumacher CA; Baartscheer A; Coronel R
    Basic Res Cardiol; 1993; 88(5):396-410. PubMed ID: 8117246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The kinetics of transport of lactate and pyruvate into isolated cardiac myocytes from guinea pig. Kinetic evidence for the presence of a carrier distinct from that in erythrocytes and hepatocytes.
    Poole RC; Halestrap AP; Price SJ; Levi AJ
    Biochem J; 1989 Dec; 264(2):409-18. PubMed ID: 2604725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport L-lactate as well as butyrate.
    Ritzhaupt A; Wood IS; Ellis A; Hosie KB; Shirazi-Beechey SP
    J Physiol; 1998 Dec; 513 ( Pt 3)(Pt 3):719-32. PubMed ID: 9824713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate-proton co-transport and its contribution to interstitial acidification during hypoxia in isolated rat spinal roots.
    Schneider U; Poole RC; Halestrap AP; Grafe P
    Neuroscience; 1993 Apr; 53(4):1153-62. PubMed ID: 8389429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular K+ loss and anion efflux during myocardial ischemia and metabolic inhibition.
    Weiss JN; Lamp ST; Shine KI
    Am J Physiol; 1989 Apr; 256(4 Pt 2):H1165-75. PubMed ID: 2468298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate and inhibitor specificities of the monocarboxylate transporters of single rat heart cells.
    Wang X; Levi AJ; Halestrap AP
    Am J Physiol; 1996 Feb; 270(2 Pt 2):H476-84. PubMed ID: 8779821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A basolateral lactate/H+ co-transporter in Madin-Darby Canine Kidney (MDCK) cells.
    Rosenberg SO; Fadil T; Schuster VL
    Biochem J; 1993 Jan; 289 ( Pt 1)(Pt 1):263-8. PubMed ID: 8424765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactate transport by skeletal muscle sarcolemmal vesicles.
    McDermott JC; Bonen A
    Mol Cell Biochem; 1993 May; 122(2):113-21. PubMed ID: 8232242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the inhibition by stilbene disulphonates and phloretin of lactate and pyruvate transport into rat and guinea-pig cardiac myocytes suggests the presence of two kinetically distinct carriers in heart cells.
    Wang X; Poole RC; Halestrap AP; Levi AJ
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):249-58. PubMed ID: 8439293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactate transport by cardiac sarcolemmal vesicles.
    Trosper TL; Philipson KD
    Am J Physiol; 1987 May; 252(5 Pt 1):C483-9. PubMed ID: 3578501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.