BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8156665)

  • 1. Force required for bone segment transport in the treatment of large bone defects using medullary nail fixation.
    Brunner UH; Cordey J; Schweiberer L; Perren SM
    Clin Orthop Relat Res; 1994 Apr; (301):147-55. PubMed ID: 8156665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Treatment of defects of the long bones using distraction osteogenesis (Ilizarov) and intramedullary nailing. Theoretic principles, animal experiments, clinical relevance].
    Brunner U; Kessler S; Cordey J; Rahn B; Schweiberer L; Perren SM
    Unfallchirurg; 1990 Jun; 93(6):244-50. PubMed ID: 2367860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone transport combined with locking bridge plate fixation for the treatment of tibial segmental defects: a report of 2 cases.
    Girard PJ; Kuhn KM; Bailey JR; Lynott JA; Mazurek MT
    J Orthop Trauma; 2013 Sep; 27(9):e220-6. PubMed ID: 22955338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forces involved in lower limb lengthening: an in vivo biomechanical study.
    Lauterburg MT; Exner GU; Jacob HA
    J Orthop Res; 2006 Sep; 24(9):1815-22. PubMed ID: 16865711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Management of Osseous Defects in the Tibia: Utilization of External Fixation, Distraction Osteogenesis, and Bone Transport.
    Millonig K; Hutchinson B
    Clin Podiatr Med Surg; 2021 Jan; 38(1):111-116. PubMed ID: 33220740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biologic model of bone transport distraction osteogenesis and vascular response.
    DeCoster TA; Simpson AH; Wood M; Li G; Kenwright J
    J Orthop Res; 1999 Mar; 17(2):238-45. PubMed ID: 10221841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Tractive force measurement in bone transport--an in vivo investigation in humans].
    Baumgart R; Kuhn V; Hinterwimmer S; Krammer M; Mutschler W
    Biomed Tech (Berl); 2004 Sep; 49(9):248-56. PubMed ID: 15493133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone segment transport in combination with an intramedullary nail.
    Brunner UH; Cordey J; Kessler S; Rahn BA; Schweiberer L; Perren SM
    Injury; 1993; 24 Suppl 2():S29-44. PubMed ID: 8188329
    [No Abstract]   [Full Text] [Related]  

  • 9. Segmental transport after unreamed intramedullary nailing. Preliminary report of a "Monorail" system.
    Raschke MJ; Mann JW; Oedekoven G; Claudi BF
    Clin Orthop Relat Res; 1992 Sep; (282):233-40. PubMed ID: 1516319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone regeneration and fracture healing. Experience with distraction osteogenesis model.
    Richards M; Goulet JA; Weiss JA; Waanders NA; Schaffler MB; Goldstein SA
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S191-204. PubMed ID: 9917639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Craniofacial reconstruction by transport distraction osteogenesis: corticotomy versus osteotomy--an experimental study.
    Kramer FJ; Mueller M; Rahmstorf M; Swennen G; Dempf R; Schierle H
    J Craniofac Surg; 2004 Jul; 15(4):556-65. PubMed ID: 15213530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Management of Segmental Tibial Bone Defects With a Motorized Intramedullary Bone Transport Nail: A Case Review With Follow-Up.
    Stoneback JW; Erdman MK; Marecek GS
    J Orthop Trauma; 2021 Oct; 35(Suppl 4):S13-S18. PubMed ID: 34533481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mode of interfragmentary movement affects bone formation and revascularization after callus distraction.
    Claes L; Meyers N; Schülke J; Reitmaier S; Klose S; Ignatius A
    PLoS One; 2018; 13(8):e0202702. PubMed ID: 30138362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity.
    Isaksson H; Comas O; van Donkelaar CC; Mediavilla J; Wilson W; Huiskes R; Ito K
    J Biomech; 2007; 40(9):2002-11. PubMed ID: 17112532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Results of femoral lengthening over an intramedullary nail and external fixator].
    Jasiewicz B; Kacki W; Tesiorowski M; Potaczek T
    Chir Narzadow Ruchu Ortop Pol; 2008; 73(3):177-83. PubMed ID: 18847023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An interspecies computational study on limb lengthening.
    Reina-Romo E; Gómez-Benito MJ; García-Aznar JM; Domínguez J; Doblaré M
    Proc Inst Mech Eng H; 2010 Nov; 224(11):1245-56. PubMed ID: 21218687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limb salvage using distraction osteogenesis. A classification of the technique.
    Tsuchiya H; Tomita K; Minematsu K; Mori Y; Asada N; Kitano S
    J Bone Joint Surg Br; 1997 May; 79(3):403-11. PubMed ID: 9180318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Plate-assisted segmental bone transport with a lengthening nail and a plate : A new technique for treatment of tibial and femoral bone defects].
    Kähler Olesen U
    Unfallchirurg; 2018 Nov; 121(11):874-883. PubMed ID: 30242443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the fixator stiffness on the young regenerate bone after bone transport: computational approach.
    Reina-Romo E; Gómez-Benito MJ; Domínguez J; Niemeyer F; Wehner T; Simon U; Claes LE
    J Biomech; 2011 Mar; 44(5):917-23. PubMed ID: 21168137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histological evolution of the regenerate during bone transport: an experimental study in sheep.
    López-Pliego EM; Giráldez-Sánchez MÁ; Mora-Macías J; Reina-Romo E; Domínguez J
    Injury; 2016 Sep; 47 Suppl 3():S7-S14. PubMed ID: 27692111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.