BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8157271)

  • 21. Epitope mapping of the V3 domain of feline immunodeficiency virus envelope glycoprotein by monoclonal antibodies.
    Lombardi S; Massi C; Tozzini F; Zaccaro L; Bazzichi A; Bandecchi P; La Rosa C; Bendinelli M; Garzelli C
    J Gen Virol; 1995 Aug; 76 ( Pt 8)():1893-9. PubMed ID: 7636470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neutralization sensitivity and accessibility of continuous B cell epitopes of the feline immunodeficiency virus envelope.
    Richardson J; Fossati I; Moraillon A; Castelot S; Sonigo P; Pancino G
    J Gen Virol; 1996 Apr; 77 ( Pt 4)():759-71. PubMed ID: 8627265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of rat NCA/CD9 cell surface antigen and its expression by normal and malignant neural cells.
    Deissler H; Blass-Kampmann S; Kindler-Röhrborn A; Meyer HE; Rajewsky MF
    J Neurosci Res; 1996 Mar; 43(6):664-74. PubMed ID: 8984196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of the feline CD63 homologue using retrovirus-mediated expression cloning.
    Sakurai Y; Shimojima M; Miyazawa T; Masuoka K; Tohya Y; Akashi H
    Vet Immunol Immunopathol; 2004 Apr; 98(3-4):185-91. PubMed ID: 15010227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Factors that increase the effective concentration of CXCR4 dictate feline immunodeficiency virus tropism and kinetics of replication.
    de Parseval A; Ngo S; Sun P; Elder JH
    J Virol; 2004 Sep; 78(17):9132-43. PubMed ID: 15308709
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of CXCR4 in the brain of feline immunodeficiency virus infected cat.
    Koirala TR; Sharma S; Morikawa S; Ishida T
    Indian J Pathol Microbiol; 2000 Jul; 43(3):285-90. PubMed ID: 11218674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential CXCR4 expression and function in subpopulations of the feline lymphoma cell line 3201 susceptible to feline immunodeficiency virus.
    Tochikura TS; Motokawa K; Naito Y; Kozutsumi Y; Tanabe-Tochikura A; Hohdatsu T
    J Feline Med Surg; 2010 Apr; 12(4):269-77. PubMed ID: 19896878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping the domains of CD134 as a functional receptor for feline immunodeficiency virus.
    Willett BJ; McMonagle EL; Bonci F; Pistello M; Hosie MJ
    J Virol; 2006 Aug; 80(15):7744-7. PubMed ID: 16840353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determining the feline immunodeficiency virus (FIV) status of FIV-vaccinated cats using point-of-care antibody kits.
    Westman ME; Malik R; Hall E; Sheehy PA; Norris JM
    Comp Immunol Microbiol Infect Dis; 2015 Oct; 42():43-52. PubMed ID: 26459979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of feline immunodeficiency virus in feline and non-feline non-lymphoid cell lines by transfection of an infectious molecular clone.
    Miyazawa T; Kawaguchi Y; Kohmoto M; Sakuragi J; Adachi A; Fukasawa M; Mikami T
    J Gen Virol; 1992 Jun; 73 ( Pt 6)():1543-6. PubMed ID: 1318947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A feline homologue of CD1 is defined using a feline-specific monoclonal antibody.
    Woo JC; Moore PF
    Tissue Antigens; 1997 Mar; 49(3 Pt 1):244-51. PubMed ID: 9098931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a feline homologue of the alphaE integrin subunit (CD103) reveals high specificity for intra-epithelial lymphocytes.
    Woo JC; Roccabianca P; van Stijn A; Moore PF
    Vet Immunol Immunopathol; 2002 Feb; 85(1-2):9-22. PubMed ID: 11867163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The generation of monoclonal antibodies recognising novel epitopes by immunisation with solid matrix antigen-antibody complexes reveals a polymorphic determinant on feline CD4.
    Willett BJ; de Parseval A; Peri E; Rocchi M; Hosie MJ; Randall R; Klatzmann D; Neil JC; Jarrett O
    J Immunol Methods; 1994 Dec; 176(2):213-20. PubMed ID: 7527069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distribution of cell surface glycoprotein CD9 (P24) antigen on megakaryocyte lineage leukemias and cell lines.
    Imamura N; Mtasiwa DM; Ota H; Inada T; Kuramoto A
    Am J Hematol; 1990 Sep; 35(1):65-7. PubMed ID: 2389771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemical and histochemical characterization of a murine tubular antigen.
    Davis ID; LeBien TW; Lindman BJ; Platt JL
    J Am Soc Nephrol; 1991 Apr; 1(10):1153-61. PubMed ID: 1768810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative membrane proteomics reveals a role for tetraspanin enriched microdomains during entry of human cytomegalovirus.
    Viswanathan K; Verweij MC; John N; Malouli D; Früh K
    PLoS One; 2017; 12(11):e0187899. PubMed ID: 29121670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomic analysis of membrane proteins of vero cells: exploration of potential proteins responsible for virus entry.
    Guo D; Zhu Q; Zhang H; Sun D
    DNA Cell Biol; 2014 Jan; 33(1):20-8. PubMed ID: 24286161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunohistochemical distribution of the tetraspanin CD9 in normal porcine tissues.
    Yubero N; Jiménez-Marín A; Lucena C; Barbancho M; Garrido JJ
    Mol Biol Rep; 2011 Feb; 38(2):1021-8. PubMed ID: 20585885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strategies for targeting tetraspanin proteins: potential therapeutic applications in microbial infections.
    Hassuna N; Monk PN; Moseley GW; Partridge LJ
    BioDrugs; 2009; 23(6):341-59. PubMed ID: 19894777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Widespread balancing selection and pathogen-driven selection at blood group antigen genes.
    Fumagalli M; Cagliani R; Pozzoli U; Riva S; Comi GP; Menozzi G; Bresolin N; Sironi M
    Genome Res; 2009 Feb; 19(2):199-212. PubMed ID: 18997004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.